Advertisement

Mammography biomarkers of cardiovascular and musculoskeletal health: A review

      Highlights

      • Female-specific cardiovascular risk-assessment algorithms are still lacking.
      • Mammography interpretation currently focuses only on oncological diagnosis.
      • Breast density and arterial calcifications are ancillary features visible on mammography.
      • Breast density and arterial calcifications are proven cardiometabolic risk biomarkers.
      • Structured reporting of imaging biomarkers could help stratify cardiometabolic risk.

      Abstract

      Breast density (BD) and breast arterial calcifications (BAC) can expand the role of mammography. In premenopause, BD is related to body fat composition: breast adipose tissue and total volume are potential indicators of fat storage in visceral depots, associated with higher risk of cardiovascular disease (CVD). Women with fatty breast have an increased likelihood of hypercholesterolemia. Women without cardiometabolic diseases with higher BD have a lower risk of diabetes mellitus, hypertension, chest pain, and peripheral vascular disease, while those with lower BD are at increased risk of cardiometabolic diseases. BAC, the expression of Monckeberg sclerosis, are associated with CVD risk. Their prevalence, 13 % overall, rises after menopause and is reduced in women aged over 65 receiving hormonal replacement therapy. Due to their distinct pathogenesis, BAC are associated with hypertension but not with other cardiovascular risk factors. Women with BAC have an increased risk of acute myocardial infarction, ischemic stroke, and CVD death; furthermore, moderate to severe BAC load is associated with coronary artery disease. The clinical use of BAC assessment is limited by their time-consuming manual/visual quantification, an issue possibly solved by artificial intelligence-based approaches addressing BAC complex topology as well as their large spectrum of extent and x-ray attenuations. A link between BD, BAC, and osteoporosis has been reported, but data are still inconclusive. Systematic, standardised reporting of BD and BAC should be encouraged.

      Abbreviations:

      CVD (cardiovascular disease), BI-RADS (Breast Imaging-Reporting and Data System), BAC (breast arterial calcifications), CI (confidence interval)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Timmis A.
        • Townsend N.
        • Gale C.P.
        • Torbica A.
        • Lettino M.
        • Petersen S.E.
        • Mossialos E.A.
        • Maggioni A.P.
        • Kazakiewicz D.
        • May H.T.
        • De Smedt D.
        • Flather M.
        • Zuhlke L.
        • Beltrame J.F.
        • Huculeci R.
        • Tavazzi L.
        • Hindricks G.
        • Bax J.
        • Casadei B.
        • Achenbach S.
        • Wright L.
        • Vardas P.
        • European Society of Cardiology
        European Society of Cardiology: Cardiovascular Disease Statistics 2019.
        Eur. Heart J. 2019; 41: 12-85https://doi.org/10.1093/eurheartj/ehz859
        • Iorga A.
        • Cunningham C.M.
        • Moazeni S.
        • Ruffenach G.
        • Umar S.
        • Eghbali M.
        The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy.
        Biol. Sex Differ. 2017; 8: 33https://doi.org/10.1186/s13293-017-0152-8
        • Maas A.H.E.M.
        • Rosano G.
        • Cifkova R.
        • Chieffo A.
        • van Dijken D.
        • Hamoda H.
        • Kunadian V.
        • Laan E.
        • Lambrinoudaki I.
        • Maclaran K.
        • Panay N.
        • Stevenson J.C.
        • van Trotsenburg M.
        • Collins P.
        Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from european cardiologists, gynaecologists, and endocrinologists.
        Eur. Heart J. 2021; 42: 967-984https://doi.org/10.1093/eurheartj/ehaa1044
        • Garcia M.
        • Mulvagh S.L.
        • Bairey Merz C.N.
        • Buring J.E.
        • Manson J.E.
        Cardiovascular disease in women.
        Circ. Res. 2016; 118: 1273-1293https://doi.org/10.1161/CIRCRESAHA.116.307547
        • Timmis A.
        • Townsed N.
        • Gale C.
        • Grobbee R.
        • Maniadakis N.
        • Flather M.
        • Wilkins E.
        • Wright L.
        • Vos R.
        • Bax J.
        • Blum M.
        • Pinto F.
        • Vardas P.
        • ESC Scientific Document Group
        European Society of Cardiology: Cardiovascular Disease Statistics 2017.
        Eur. Heart J. 2018; 39: 508-579https://doi.org/10.1093/eurheartj/ehx628
        • Vogel B.
        • Acevedo M.
        • Appelman Y.
        • Bairey Merz C.N.
        • Chieffo A.
        • Figtree G.A.
        • Guerrero M.
        • Kunadian V.
        • Lam C.S.P.
        • Maas A.H.E.M.
        • Mihailidou A.S.
        • Olszanecka A.
        • Poole J.E.
        • Saldarriaga C.
        • Saw J.
        • Zühlke L.
        • Mehran R.
        The lancet women and cardiovascular disease commission: reducing the global burden by 2030.
        Lancet. 2021; 397: 2385-2438https://doi.org/10.1016/S0140-6736(21)00684-X
        • Wenger N.K.
        Transforming cardiovascular disease prevention in women: time for the pygmalion construct to end.
        Cardiology. 2015; 130: 62-68https://doi.org/10.1159/000370018
        • Hageman S.
        • Pennells L.
        • Ojeda F.
        • Kaptoge S.
        • Kuulasmaa K.
        • de Vries T.
        • Xu Z.
        • Kee F.
        • Chung R.
        • Wood A.
        • McEvoy J.W.
        • Veronesi G.
        • Bolton T.
        • Achenbach S.
        • Aleksandrova K.
        • Amiano P.
        • Sebastian D.-S.
        • Amouyel P.
        • Andersson J.
        • Bakker S.J.L.
        • Da Providencia Costa R.B.
        • Beulens J.W.J.
        • Blaha M.
        • Bobak M.
        • Boer J.M.A.
        • Bonet C.
        • Bonnet F.
        • Boutron-Ruault M.-C.
        • Braaten T.
        • Brenner H.
        • Brunner F.
        • Brunner E.J.
        • Brunström M.
        • Buring J.
        • Butterworth A.S.
        • Capkova N.
        • Cesana G.
        • Chrysohoou C.
        • Colorado-Yohar S.
        • Cook N.R.
        • Cooper C.
        • Dahm C.C.
        • Davidson K.
        • Dennison E.
        • Di Castelnuovo A.
        • Donfrancesco C.
        • Dörr M.
        • Doryńska A.
        • Eliasson M.
        • Engström G.
        • Ferrari P.
        • Ferrario M.
        • Ford I.
        • Fu M.
        • Gansevoort R.T.
        • Giampaoli S.
        • Gillum R.F.
        • Gómez de la Cámara A.
        • Grassi G.
        • Hansson P.-O.
        • Huculeci R.
        • Hveem K.
        • Iacoviello L.
        • Ikram M.K.
        • Jørgensen T.
        • Joseph B.
        • Jousilahti P.
        • Jukema J.W.
        • Kaaks R.
        • Katzke V.
        • Kavousi M.
        • Kiechl S.
        • Klotsche J.
        • König W.
        • Kronmal R.A.
        • Kubinova R.
        • Kucharska-Newton A.
        • Läll K.
        • Lehmann N.
        • Leistner D.
        • Linneberg A.
        • Lora Pablos D.
        • Lorenz T.
        • Lu W.
        • Luksiene D.
        • Lyngbakken M.
        • Magnussen C.
        • Malyutina S.
        • Marín Ibañez A.
        • Masala G.
        • Mathiesen E.B.
        • Matsushita K.
        • Meade T.W.
        • Melander O.
        • Meyer H.E.
        • Moons K.G.M.
        • Moreno-Iribas C.
        • Muller D.
        • Münzel T.
        • Nikitin Y.
        • Nordestgaard B.G.
        • Omland T.
        • Onland C.
        • Overvad K.
        • Packard C.
        • Pająk A.
        • Palmieri L.
        • Panagiotakos D.
        • Panico S.
        • Perez-Cornago A.
        • Peters A.
        • Pietilä A.
        • Pikhart H.
        • Psaty B.M.
        • Quarti-Trevano F.
        • Quirós Garcia J.R.
        • Riboli E.
        • Ridker P.M.
        • Rodriguez B.
        • Rodriguez-Barranco M.
        • Rosengren A.
        • Roussel R.
        • Sacerdote C.
        • Sans S.
        • Sattar N.
        • Schiborn C.
        • Schmidt B.
        • Schöttker B.
        • Schulze M.
        • Schwartz J.E.
        • Selmer R.M.
        • Shea S.
        • Shipley M.J.
        • Sieri S.
        • Söderberg S.
        • Sofat R.
        • Tamosiunas A.
        • Thorand B.
        • Tillmann T.
        • Tjønneland A.
        • Tong T.Y.N.
        • Trichopoulou A.
        • Tumino R.
        • Tunstall-Pedoe H.
        • Tybjaerg-Hansen A.
        • Tzoulaki J.
        • van der Heijden A.
        • van der Schouw Y.T.
        • Verschuren W.M.M.
        • Völzke H.
        • Waldeyer C.
        • Wareham N.J.
        • Weiderpass E.
        • Weidinger F.
        • Wild P.
        • Willeit J.
        • Willeit P.
        • Wilsgaard T.
        • Woodward M.
        • Zeller T.
        • Zhang D.
        • Zhou B.
        • Dendale P.
        • Ference B.A.
        • Halle M.
        • Timmis A.
        • Vardas P.
        • Danesh J.
        • Graham I.
        • Salomaa V.
        • Visseren F.
        • De Bacquer D.
        • Blankenberg S.
        • Dorresteijn J.
        • Di Angelantonio E.
        SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in europe.
        Eur. Heart J. 2021; 42: 2439-2454https://doi.org/10.1093/eurheartj/ehab309
        • Trimboli R.M.
        • Giorgi Rossi P.
        • Battisti N.M.L.
        • Cozzi A.
        • Magni V.
        • Zanardo M.
        • Sardanelli F.
        Do we still need breast cancer screening in the era of targeted therapies and precision medicine?, Insights.
        Imaging. 2020; 11: 105https://doi.org/10.1186/s13244-020-00905-3
        • Gianino M.M.
        • Lenzi J.
        • Bonaudo M.
        • Fantini M.P.
        • Siliquini R.
        • Ricciardi W.
        • Damiani G.
        Organized screening programmes for breast and cervical cancer in 17 EU countries: trajectories of attendance rates.
        BMC Public Health. 2018; 18: 1236https://doi.org/10.1186/s12889-018-6155-5
        • Bui Q.M.
        • Daniels L.B.
        A review of the role of breast arterial calcification for cardiovascular risk stratification in women.
        Circulation. 2019; 139: 1094-1101https://doi.org/10.1161/CIRCULATIONAHA.118.038092
        • Grassmann F.
        • Yang H.
        • Eriksson M.
        • Azam S.
        • Hall P.
        • Czene K.
        Mammographic features are associated with cardiometabolic disease risk and mortality.
        Eur. Heart J. 2021; 42: 3361-3370https://doi.org/10.1093/eurheartj/ehab502
        • Cooke A.
        • Smith D.
        • Booth A.
        Beyond PICO.
        Qual. Health Res. 2012; 22: 1435-1443https://doi.org/10.1177/1049732312452938
        • Nazari S.S.
        • Mukherjee P.
        An overview of mammographic density and its association with breast cancer.
        Breast Cancer. 2018; 25: 259-267https://doi.org/10.1007/s12282-018-0857-5
        • McCormack V.A.
        Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis.
        Cancer Epidemiol. Biomark. Prev. 2006; 15: 1159-1169https://doi.org/10.1158/1055-9965.EPI-06-0034
        • Freer P.E.
        Mammographic breast density: impact on breast cancer risk and implications for screening.
        RadioGraphics. 2015; 35: 302-315https://doi.org/10.1148/rg.352140106
        • Engmann N.J.
        • Golmakani M.K.
        • Miglioretti D.L.
        • Sprague B.L.
        • Kerlikowske K.
        Population-attributable risk proportion of clinical risk factors for breast cancer.
        JAMA Oncol. 2017; 3: 1228https://doi.org/10.1001/jamaoncol.2016.6326
        • Kim G.
        • Bahl M.
        Assessing risk of breast cancer: a review of risk prediction models.
        J. Breast Imaging. 2021; 3: 144-155https://doi.org/10.1093/jbi/wbab001
        • Mann R.M.
        • Athanasiou A.
        • Baltzer P.A.T.
        • Camps-Herrero J.
        • Clauser P.
        • Fallenberg E.M.
        • Forrai G.
        • Fuchsjäger M.H.
        • Helbich T.H.
        • Killburn-Toppin F.
        • Lesaru M.
        • Panizza P.
        • Pediconi F.
        • Pijnappel R.M.
        • Pinker K.
        • Sardanelli F.
        • Sella T.
        • Thomassin-Naggara I.
        • Zackrisson S.
        • Gilbert F.J.
        • Kuhl C.K.
        Breast cancer screening in women with extremely dense breasts recommendations of the EUropean SOciety of Breast Imaging (EUSOBI).
        Eur. Radiol. 2022; 32: 4036-4045https://doi.org/10.1007/s00330-022-08617-6
        • Sickles E.A.
        • D’Orsi C.J.
        • Bassett L.W.
        ACR BI-RADS® Mammography.
        ACR BI-RADS® Atlas. 5th. American College of Radiology, Reston, VA, USA2013
        • Boyd N.F.
        • Byng J.W.
        • Jong R.A.
        • Fishell E.K.
        • Little L.E.
        • Miller A.B.
        • Lockwood G.A.
        • Tritchler D.L.
        • Yaffe M.J.
        Quantitative classification of mammographic densities and breast cancer risk: results from the canadian national breast screening study.
        JNCI J. Natl. Cancer Inst. 1995; 87: 670-675https://doi.org/10.1093/jnci/87.9.670
        • Gram I.T.
        • Funkhouser E.
        • Tabár L.
        The Tabár classification of mammographic parenchymal patterns.
        Eur. J. Radiol. 1997; 24: 131-136https://doi.org/10.1016/S0720-048X(96)01138-2
        • Conant E.F.
        • Sprague B.L.
        • Kontos D.
        Beyond BI-RADS density: a call for quantification in the breast imaging clinic.
        Radiology. 2018; 286: 401-404https://doi.org/10.1148/radiol.2017170644
        • Ciatto S.
        • Houssami N.
        • Apruzzese A.
        • Bassetti E.
        • Brancato B.
        • Carozzi F.
        • Catarzi S.
        • Lamberini M.P.
        • Marcelli G.
        • Pellizzoni R.
        • Pesce B.
        • Risso G.
        • Russo F.
        • Scorsolini A.
        Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories.
        Breast. 2005; 14: 269-275https://doi.org/10.1016/j.breast.2004.12.004
        • Ooms E.A.
        • Zonderland H.M.
        • Eijkemans M.J.C.
        • Kriege M.
        • Mahdavian Delavary B.
        • Burger C.W.
        • Ansink A.C.
        Mammography: interobserver variability in breast density assessment.
        Breast. 2007; 16: 568-576https://doi.org/10.1016/j.breast.2007.04.007
        • Alomaim W.
        • O’Leary D.
        • Ryan J.
        • Rainford L.
        • Evanoff M.
        • Foley S.
        Variability of breast density classification between US and UK radiologists.
        J. Med. Imaging Radiat. Sci. 2019; 50: 53-61https://doi.org/10.1016/j.jmir.2018.11.002
        • Lehman C.D.
        • Yala A.
        • Schuster T.
        • Dontchos B.
        • Bahl M.
        • Swanson K.
        • Barzilay R.
        Mammographic breast density assessment using deep learning: clinical implementation.
        Radiology. 2019; 290: 52-58https://doi.org/10.1148/radiol.2018180694
        • Morrish O.W.E.
        • Tucker L.
        • Black R.
        • Willsher P.
        • Duffy S.W.
        • Gilbert F.J.
        Mammographic breast density: comparison of methods for quantitative evaluation.
        Radiology. 2015; 275: 356-365https://doi.org/10.1148/radiol.14141508
        • Magni V.
        • Interlenghi M.
        • Cozzi A.
        • Alì M.
        • Salvatore C.
        • Azzena A.A.
        • Capra D.
        • Carriero S.
        • Della Pepa G.
        • Fazzini D.
        • Granata G.
        • Monti C.B.
        • Muscogiuri G.
        • Pellegrino G.
        • Schiaffino S.
        • Castiglioni I.
        • Papa S.
        • Sardanelli F.
        Development and validation of an AI-driven mammographic breast density classification tool based on radiologist consensus.
        Radiol. Artif. Intell. 2022; 4https://doi.org/10.1148/ryai.210199
        • Ciritsis A.
        • Rossi C.
        • Vittoria De Martini I.
        • Eberhard M.
        • Marcon M.
        • Becker A.S.
        • Berger N.
        • Boss A.
        Determination of mammographic breast density using a deep convolutional neural network.
        Br. J. Radiol. 2018; 92: 20180691https://doi.org/10.1259/bjr.20180691
        • Burton A.
        • Maskarinec G.
        • Perez-Gomez B.
        • Vachon C.
        • Miao H.
        • Lajous M.
        • López-Ridaura R.
        • Rice M.
        • Pereira A.
        • Garmendia M.L.
        • Tamimi R.M.
        • Bertrand K.
        • Kwong A.
        • Ursin G.
        • Lee E.
        • Qureshi S.A.
        • Ma H.
        • Vinnicombe S.
        • Moss S.
        • Allen S.
        • Ndumia R.
        • Vinayak S.
        • Teo S.-H.
        • Mariapun S.
        • Fadzli F.
        • Peplonska B.
        • Bukowska A.
        • Nagata C.
        • Stone J.
        • Hopper J.
        • Giles G.
        • Ozmen V.
        • Aribal M.E.
        • Schüz J.
        • Van Gils C.H.
        • Wanders J.O.P.
        • Sirous R.
        • Sirous M.
        • Hipwell J.
        • Kim J.
        • Lee J.W.
        • Dickens C.
        • Hartman M.
        • Chia K.-S.
        • Scott C.
        • Chiarelli A.M.
        • Linton L.
        • Pollan M.
        • Flugelman A.A.
        • Salem D.
        • Kamal R.
        • Boyd N.
        • Dos-Santos-Silva I.
        • McCormack V.
        Mammographic density and ageing: a collaborative pooled analysis of cross-sectional data from 22 countries worldwide.
        PLoS Med. 2017; 14e1002335https://doi.org/10.1371/journal.pmed.1002335
        • Henson D.E.
        • Tarone R.E.
        • Nsouli H.
        Lobular involution: the physiological prevention of breast cancer.
        JNCI J. Natl. Cancer Inst. 2006; 98: 1589-1590https://doi.org/10.1093/jnci/djj454
        • Boyd N.F.
        • Stone J.
        • Martin L.J.
        • Jong R.
        • Fishell E.
        • Yaffe M.
        • Hammond G.
        • Minkin S.
        The association of breast mitogens with mammographic densities.
        Br. J. Cancer. 2002; 87: 876-882https://doi.org/10.1038/sj.bjc.6600537
        • Pike M.C.
        • Krailo M.D.
        • Henderson B.E.
        • Casagrande J.T.
        • Hoel D.G.
        ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer.
        Nature. 1983; 303: 767-770https://doi.org/10.1038/303767a0
        • Hudson S.
        • Vik Hjerkind K.
        • Vinnicombe S.
        • Allen S.
        • Trewin C.
        • Ursin G.
        • Dos-Santos-Silva I.
        • De Stavola B.L.
        Adjusting for BMI in analyses of volumetric mammographic density and breast cancer risk.
        Breast Cancer Res. 2018; 20: 156https://doi.org/10.1186/s13058-018-1078-8
        • Sala E.
        • Warren R.
        • McCann J.
        • Duffy S.
        • Luben R.
        • Day N.
        High-risk mammographic parenchymal patterns and anthropometric measures: a case–control study.
        Br. J. Cancer. 1999; 81: 1257-1261https://doi.org/10.1038/sj.bjc.6690838
        • Dorgan J.F.
        • Klifa C.
        • Shepherd J.A.
        • Egleston B.L.
        • Kwiterovich P.O.
        • Himes J.H.
        • Gabriel K.P.
        • Van Horn L.
        • Snetselaar L.G.
        • Stevens V.J.
        • Barton B.A.
        • Robson A.M.
        • Lasser N.L.
        • Deshmukh S.
        • Hylton N.M.
        Height, adiposity and body fat distribution and breast density in young women.
        Breast Cancer Res. 2012; 14: R107https://doi.org/10.1186/bcr3228
        • Janiszewski P.M.
        • Saunders T.J.
        • Ross R.
        Breast volume is an independent predictor of visceral and ectopic fat in premenopausal women.
        Obesity. 2010; 18: 1183-1187https://doi.org/10.1038/oby.2009.336
        • Després J.-P.
        Body fat distribution and risk of cardiovascular disease.
        Circulation. 2012; 126: 1301-1313https://doi.org/10.1161/CIRCULATIONAHA.111.067264
        • Manrique-Acevedo C.
        • Chinnakotla B.
        • Padilla J.
        • Martinez-Lemus L.A.
        • Gozal D.
        Obesity and cardiovascular disease in women.
        Int. J. Obes. 2020; 44: 1210-1226https://doi.org/10.1038/s41366-020-0548-0
        • Schautz B.
        • Later W.
        • Heller M.
        • Müller M.J.
        • Bosy-Westphal A.
        Associations between breast adipose tissue, body fat distribution and cardiometabolic risk in women: cross-sectional data and weight-loss intervention.
        Eur. J. Clin. Nutr. 2011; 65: 784-790https://doi.org/10.1038/ejcn.2011.35
        • Sardu C.
        • Gatta G.
        • Pieretti G.
        • Viola L.
        • Sacra C.
        • Di Grezia G.
        • Musto L.
        • Minelli S.
        • La Forgia D.
        • Capodieci M.
        • Galiano A.
        • Vestito A.
        • De Lisio A.
        • Pafundi P.C.
        • Sasso F.C.
        • Cappabianca S.
        • Nicoletti G.
        • Paolisso G.
        • Marfella R.
        Pre-menopausal breast fat density might predict MACE during 10 years of follow-up.
        JACC Cardiovasc. Imaging. 2021; 14: 426-438https://doi.org/10.1016/j.jcmg.2020.08.028
        • Alhallak I.
        • Wolter K.G.
        • Castro Munoz A.
        • Simmen F.A.
        • Ward R.J.
        • Petty S.A.
        • Li L.-X.
        • Simmen R.C.M.
        Breast adipose regulation of premenopausal breast epithelial phenotype involves interleukin 10.
        J. Mol. Endocrinol. 2021; 67: 173-188https://doi.org/10.1530/JME-21-0100
        • Al-Mohaissen M.
        • Alkhedeiri A.
        • Al-Madani O.
        • Lee T.
        • Hamdoun A.
        • Al-Harbi M.
        Association of mammographic density and benign breast calcifications individually or combined with hypertension, diabetes, and hypercholesterolemia in women ≥40 years of age: a retrospective study.
        J. Investig. Med. 2022; 70: 1308-1315https://doi.org/10.1136/jim-2021-002296
        • Maas A.H.E.M.
        • de Jong P.A.
        Mammograms to catch many birds with one stone.
        Eur. Heart J. 2021; 42: 3371-3373https://doi.org/10.1093/eurheartj/ehab522
        • Trimboli R.M.
        • Codari M.
        • Guazzi M.
        • Sardanelli F.
        Screening mammography beyond breast cancer: breast arterial calcifications as a sex-specific biomarker of cardiovascular risk.
        Eur. J. Radiol. 2019; 119108636https://doi.org/10.1016/j.ejrad.2019.08.005
        • Zazzeroni L.
        • Faggioli G.
        • Pasquinelli G.
        Mechanisms of arterial calcification: the role of matrix vesicles.
        Eur. J. Vasc. Endovasc. Surg. 2018; 55: 425-432https://doi.org/10.1016/j.ejvs.2017.12.009
        • Micheletti R.G.
        • Fishbein G.A.
        • Currier J.S.
        • Fishbein M.C.
        Mönckeberg sclerosis revisited: a clarification of the histologic definition of Mönckeberg sclerosis.
        Arch. Pathol. Lab. Med. 2008; 132: 43-47https://doi.org/10.5858/2008-132-43-MSRACO
        • van Noord P.A.
        • Beijerinck D.
        • Kemmeren J.M.
        • van der Graaf Y.
        Mammograms may convey more than breast cancer risk: breast arterial calcification and arterio-sclerotic related diseases in women of the DOM cohort.
        Eur. J. Cancer Prev. 1996; 5: 483-487
        • Maas A.H.E.M.
        • van der Schouw Y.T.
        • Atsma F.
        • Beijerinck D.
        • Deurenberg J.J.M.
        • Mali W.P.T.M.
        • van der Graaf Y.
        Breast arterial calcifications are correlated with subsequent development of coronary artery calcifications, but their aetiology is predominantly different.
        Eur. J. Radiol. 2007; 63: 396-400https://doi.org/10.1016/j.ejrad.2007.02.009
        • Nielsen B.B.
        • Holm N.V.
        Calcification in breast arteries, acta pathol.
        Microbiol. Scand. Ser. A Pathol. 1985; 93A: 13-16https://doi.org/10.1111/j.1699-0463.1985.tb03914.x
        • Iribarren C.
        • Sanchez G.
        • Husson G.
        • Levine-Hall T.
        • Quesenberry C.
        • Sam D.L.
        • Maier J.
        • Chaudhary R.S.
        • Patel M.
        • Sadeghi B.
        • Javan H.
        • Cho H.-M.
        • Ding H.
        • Molloi S.
        MultIethNic study of br east ARterial calcium gradation and CardioVAscular disease: cohort recruitment and baseline characteristics.
        Ann. Epidemiol. 2018; 28: 41-47.e12https://doi.org/10.1016/j.annepidem.2017.11.007
        • Iribarren C.
        • Sanchez G.
        • Lu M.
        • Bidgoli F.A.
        • Cho H.-M.
        • Ding H.
        • Molloi S.
        Association of breast arterial calcification presence and gradation with the ankle-brachial index among postmenopausal women.
        Eur. J. Cardiovasc. Med. 2018; 5: 544-551
        • Hendriks E.J.E.
        • Beulens J.W.J.
        • Mali W.P.T.M.
        • Beijerinck D.
        • van der Graaf Y.
        • de Jong P.A.
        • van der Schouw Y.T.
        Breast arterial calcifications and their association with incident cardiovascular disease and diabetes.
        J. Am. Coll. Cardiol. 2015; 65: 859-860https://doi.org/10.1016/j.jacc.2014.12.015
        • Hendriks E.J.E.
        • de Jong P.A.
        • van der Graaf Y.
        • Mali W.P.T.M.
        • van der Schouw Y.T.
        • Beulens J.W.J.
        Breast arterial calcifications: a systematic review and meta-analysis of their determinants and their association with cardiovascular events.
        Atherosclerosis. 2015; 239: 11-20https://doi.org/10.1016/j.atherosclerosis.2014.12.035
        • Schnatz P.F.
        • Rotter M.A.
        • Hadley S.
        • Currier A.A.
        • O’Sullivan D.M.
        Hormonal therapy is associated with a lower prevalence of breast arterial calcification on mammography.
        Maturitas. 2007; 57: 154-160https://doi.org/10.1016/j.maturitas.2006.12.002
        • Lee S.C.
        • Phillips M.
        • Bellinge J.
        • Stone J.
        • Wylie E.
        • Schultz C.
        Is breast arterial calcification associated with coronary artery disease?—A systematic review and meta-analysis.
        PLoS One. 2020; 15e0236598https://doi.org/10.1371/journal.pone.0236598
        • Margolies L.
        • Salvatore M.
        • Hecht H.S.
        • Kotkin S.
        • Yip R.
        • Baber U.
        • Bishay V.
        • Narula J.
        • Yankelevitz D.
        • Henschke C.
        Digital mammography and screening for coronary artery disease.
        JACC Cardiovasc. Imaging. 2016; 9: 350-360https://doi.org/10.1016/j.jcmg.2015.10.022
        • Yoon Y.E.
        • Kim K.M.
        • Han J.S.
        • Kang S.-H.
        • Chun E.J.
        • Ahn S.
        • Kim S.M.
        • Choi S.Il
        • Yun B.La
        • Suh J.-W.
        Prediction of Subclinical Coronary Artery Disease With Breast Arterial Calcification and Low Bone Mass in Asymptomatic Women.
        JACC Cardiovasc. Imaging. 2019; 12: 1202-1211https://doi.org/10.1016/j.jcmg.2018.07.004
        • Iribarren C.
        • Chandra M.
        • Lee C.
        • Sanchez G.
        • Sam D.L.
        • Azamian F.F.
        • Cho H.-M.
        • Ding H.
        • Wong N.D.
        • Molloi S.
        Breast arterial calcification: a novel cardiovascular risk enhancer among postmenopausal women.
        Circ. Cardiovasc. Imaging. 2022; 15e013526https://doi.org/10.1161/CIRCIMAGING.121.013526
        • Schnatz P.F.
        • Marakovits K.A.
        • O’Sullivan D.M.
        The Association of Breast Arterial Calcification and Coronary Heart Disease.
        Obstet. Gynecol. 2011; 117: 233-241https://doi.org/10.1097/AOG.0b013e318206c8cb
        • Parikh R.V.
        • Iribarren C.
        • Lee C.
        • Levine-Hall T.
        • Tan T.C.
        • Sanchez G.
        • Ding H.
        • Bidgoli F.A.
        • Molloi S.
        • Go A.S.
        Kidney function, proteinuria and breast arterial calcification in women without clinical cardiovascular disease: the MINERVA study.
        PLoS One. 2019; 14e0210973https://doi.org/10.1371/journal.pone.0210973
        • Margolies L.R.
        • Yip R.
        • Hwang E.
        • Oudsema R.H.
        • Subramaniam V.R.
        • Hecht H.
        • Narula J.
        Breast arterial calcification in the mammogram report: the patient perspective.
        Am. J. Roentgenol. 2019; 212: 209-214https://doi.org/10.2214/AJR.18.20171
        • Trimboli R.M.
        • Capra D.
        • Codari M.
        • Cozzi A.
        • Di Leo G.
        • Sardanelli F.
        Breast arterial calcifications as a biomarker of cardiovascular risk: radiologists’ awareness, reporting, and action. A survey among the EUSOBI members.
        Eur. Radiol. 2021; 31: 958-966https://doi.org/10.1007/s00330-020-07136-6
        • Cameron N.A.
        • Khan S.S.
        Leveraging mammography as a unique opportunity for cardiovascular health promotion.
        Circ. Cardiovasc. Imaging. 2022; 15https://doi.org/10.1161/CIRCIMAGING.122.013977
        • McLenachan S.
        • Camilleri F.
        • Smith M.
        • Newby D.E.
        • Williams M.C.
        Breast arterial calcification on mammography and risk of coronary artery disease: a SCOT-HEART sub-study.
        Clin. Radiol. 2019; 74: 421-428https://doi.org/10.1016/j.crad.2019.01.014
        • Trimboli R.M.
        • Codari M.
        • Cozzi A.
        • Monti C.B.
        • Capra D.
        • Nenna C.
        • Spinelli D.
        • Di Leo G.
        • Baselli G.
        • Sardanelli F.
        Semiquantitative score of breast arterial calcifications on mammography (BAC-SS): intra- and inter-reader reproducibility.
        Quant. Imaging Med. Surg. 2021; 11: 2019-2027https://doi.org/10.21037/qims-20-560
        • Ružičić D.
        • Dobrić M.
        • Vuković M.
        • Hrnčić D.
        • Đorđević S.
        • Ružičić M.
        • Aleksandrić S.
        • Đorđević-Dikić A.
        • Beleslin B.
        Novel assessment tool for coronary artery disease severity during screening mammography.
        Health Care Women Int. 2018; 39: 1075-1089https://doi.org/10.1080/07399332.2018.1463226
        • Molloi S.
        • Xu T.
        • Ducote J.
        • Iribarren C.
        Quantification of breast arterial calcification using full field digital mammography.
        Med. Phys. 2008; 35: 1428-1439https://doi.org/10.1118/1.2868756
        • Trimboli R.M.
        • Codari M.
        • Bert A.
        • Carbonaro L.A.
        • Maccagnoni S.
        • Raciti D.
        • Bernardi D.
        • Clauser P.
        • Losio C.
        • Tagliafico A.
        • Sardanelli F.
        Breast arterial calcifications on mammography: intra- and inter-observer reproducibility of a semi-automatic quantification tool, radiol.
        Medica. 2018; 123: 168-173https://doi.org/10.1007/s11547-017-0827-6
        • Wang J.
        • Ding H.
        • Bidgoli F.A.
        • Zhou B.
        • Iribarren C.
        • Molloi S.
        • Baldi P.
        Detecting cardiovascular disease from mammograms with deep learning.
        IEEE Trans. Med. Imaging. 2017; 36: 1172-1181https://doi.org/10.1109/TMI.2017.2655486
        • Guo X.
        • O’Neill W.C.
        • Vey B.
        • Yang T.C.
        • Kim T.J.
        • Ghassemi M.
        • Pan I.
        • Gichoya J.W.
        • Trivedi H.
        • Banerjee I.
        SCU-net: a deep learning method for segmentation and quantification of breast arterial calcifications on mammograms.
        Med. Phys. 2021; 48: 5851-5861https://doi.org/10.1002/mp.15017
        • Park J.
        • Yoon Y.E.
        • Kim K.M.
        • Hwang I.-C.
        • Lee W.
        • Cho G.-Y.
        Prognostic value of lower bone mineral density in predicting adverse cardiovascular disease in asian women.
        Heart. 2021; 107: 1040-1046https://doi.org/10.1136/heartjnl-2020-318764
        • Sioka C.
        • Fotopoulos A.
        Parity, breastfeeding, and osteoporosis.
        Calcif. Tissue Int. 2021; 108: 277-278https://doi.org/10.1007/s00223-020-00766-4
        • Gupta R.
        • Alhajri F.A.
        • Mohammed A.M.
        • Chavan V.N.K.
        • Gupta P.
        Relationship between mammography breast density and bone mineral density.
        J. Clin. Densitom. 2008; 11: 431-436https://doi.org/10.1016/j.jocd.2007.11.001
        • Cho J.-H.
        • Kim J.-H.
        • Lee H.-K.
        The relationship between breast density and bone mineral density after menopause.
        J. Phys. Ther. Sci. 2015; 27: 1243-1246https://doi.org/10.1589/jpts.27.1243
        • Atci N.
        • Elverici E.
        • Keskin Kurt R.
        • Ozen D.
        • Unlu E.
        • Araz L.
        Association of breast arterial calcification andosteoporosis in turkish women, pakistan.
        J. Med. Sci. 2015; 31https://doi.org/10.12669/pjms.312.6120
        • Iribarren C.
        • Chandra M.
        • Molloi S.
        • Sam D.
        • Sanchez G.
        • Bidgoli F.A.
        • Cho H.-M.
        • Ding H.
        • Lo J.C.
        No association between bone mineral density and breast arterial calcification among postmenopausal women.
        J. Endocr. Soc. 2020; 4https://doi.org/10.1210/jendso/bvz026
        • Kim K.M.
        • Yoon Y.E.
        • La Yun B.
        • Suh J.-W.
        Association between bone mineral density and coronary atherosclerotic plaque according to plaque composition: registry for the women health cohort for bone, breast, and coronary artery disease study.
        J. Bone Metab. 2022; 29: 123-131https://doi.org/10.11005/jbm.2022.29.2.123
        • Lee K.H.
        • Chae S.W.
        • Yun J.S.
        • Park Y.L.
        • Park C.H.
        Association between skeletal muscle mass and mammographic breast density.
        Sci. Rep. 2021; 11: 16785https://doi.org/10.1038/s41598-021-96390-9