Advertisement

Dyslipidemia in midlife women: Approach and considerations during the menopausal transition

      Highlights

      • Independent of chronologic aging, menopause causes a proatherogenic shift in lipids.
      • Hormone therapy is not recommended for dyslipidemia or heart disease prevention.
      • Consideration of menopause status can optimize cardiac risk stratification.
      • Novel lipid-lowering agents can be utilized when lipid goals are not met with statins.

      Abstract

      Dyslipidemia is an established risk factor for cardiovascular disease (CVD), which remains the leading cause of morbidity and mortality in women globally. The incidence of dyslipidemia increases over a woman's lifespan, with adverse changes around the time of menopause. Menopause, and the years leading up to the final menstrual period, is a time of estrogen fluctuation and ultimately estrogen deficiency, which has been associated with proatherogenic changes in the lipid profile. Independent of aging, menopausal status is associated with elevations in serum total cholesterol, LDL cholesterol, apolipoproteins, and triglycerides, and decreases in HDL cholesterol (HDL-C). Emerging research also suggests that after menopause there is a loss of functional HDL cardioprotective properties. Early initiation of menopausal hormone therapy (MHT) confers a favorable effect on lipid profile, though this does not translate into improved CVD outcomes and therefore guidelines do not indicate it for primary or secondary prevention of CVD. At the time of menopause, special consideration should be given to women with conditions more associated with CVD, including polycystic ovarian syndrome, premature menopause, early menopause, premature ovarian insufficiency, and familial hypercholesterolemia. Statins remain the mainstay of dyslipidemia therapy, though novel lipid-lowering agents are emerging. This review provides an overview of lipid alterations observed during the menopausal transition, summarizes the current evidence on the role of estrogen and progestogen on lipids, identifies special populations of women at especially high risk for lipid dysregulation at menopause, and describes approaches to the screening and treatment of midlife women.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maas A.H.
        • Appelman Y.E.
        Gender differences in coronary heart disease.
        Neth. Hear. J. 2010; 18: 598-602
        • Kannel W.B.
        • Hjortland M.C.
        • McNamara P.M.
        • Gordon T.
        Menopause and risk of cardiovascular disease: the Framingham study.
        Ann. Intern. Med. 1976; 85: 447-452
        • Colditz G.A.
        • Willett W.C.
        • Stampfer M.J.
        • Rosner B.
        • Speizer F.E.
        • Hennekens C.H.
        Menopause and the risk of coronary heart disease in women.
        N. Engl. J. Med. 1987; 316: 1105-1110
        • El Khoudary S.R.
        • Greendale G.
        • Crawford S.L.
        • Avis N.E.
        • Brooks M.M.
        • Thurston R.C.
        • Karvonen-Gutierrez C.
        • Waetjen L.E.
        • Matthews K.
        The menopause transition and women's health at midlife: a progress report from the Study of Women's Health Across the Nation (SWAN).
        Menopause. 2019; 26: 1213-1227
        • Muka T.
        • Oliver-Williams C.
        • Kunutsor S.
        • Laven J.S.
        • Fauser B.C.
        • Chowdhury R.
        • Kavousi M.
        • Franco O.H.
        Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis.
        JAMA Cardiol. 2016; 1: 767-776
        • Jeong J.
        • Kim M.
        Awareness and related factors of dyslipidemia in menopausal women in Korea.
        Healthcare (Basel). 2022; 10
        • Krentz A.J.
        • von Mühlen D.
        • Barrett-Connor E.
        Searching for polycystic ovary syndrome in postmenopausal women: evidence of a dose-effect association with prevalent cardiovascular disease.
        Menopause. 2007; 14: 284-292
        • Sowers M.
        • Zheng H.
        • Tomey K.
        • Karvonen-Gutierrez C.
        • Jannausch M.
        • Li X.
        • Yosef M.
        • Symons J.
        Changes in body composition in women over six years at midlife: ovarian and chronological aging.
        J. Clin. Endocrinol. Metab. 2007; 92: 895-901
        • Bonithon-Kopp C.
        • Scarabin P.Y.
        • Darne B.
        • Malmejac A.
        • Guize L.
        Menopause-related changes in lipoproteins and some other cardiovascular risk factors.
        Int. J. Epidemiol. 1990; 19: 42-48
        • Lindquist O.
        Intraindividual changes of blood pressure, serum lipids, and body weight in relation to menstrual status: results from a prospective population study of women in Göteborg, Sweden.
        Prev Med. 1982; 11: 162-172
        • Matthews K.A.
        • Crawford S.L.
        • Chae C.U.
        • Everson-Rose S.A.
        • Sowers M.F.
        • Sternfeld B.
        • Sutton-Tyrrell K.
        Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition?.
        J. Am. Coll. Cardiol. 2009; 54: 2366-2373
        • Anagnostis P.
        • Stevenson J.C.
        • Crook D.
        • Johnston D.G.
        • Godsland I.F.
        Effects of gender, age and menopausal status on serum apolipoprotein concentrations.
        Clin. Endocrinol. 2016; 85: 733-740
        • Anagnostis P.
        • Stevenson J.C.
        • Crook D.
        • Johnston D.G.
        • Godsland I.F.
        Effects of menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions.
        Maturitas. 2015; 81: 62-68
        • Stevenson J.C.
        • Crook D.
        • Godsland I.F.
        Influence of age and menopause on serum lipids and lipoproteins in healthy women.
        Atherosclerosis. 1993; 98: 83-90
        • Peters H.W.
        • Westendorp I.C.
        • Hak A.E.
        • Grobbee D.E.
        • Stehouwer C.D.
        • Hofman A.
        • Witteman J.C.
        Menopausal status and risk factors for cardiovascular disease.
        J. Intern. Med. 1999; 246: 521-528
        • Castelli W.P.
        • Garrison R.J.
        • Wilson P.W.
        • Abbott R.D.
        • Kalousdian S.
        • Kannel W.B.
        Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study.
        JAMA. 1986; 256: 2835-2838
        • Gordon D.J.
        • Probstfield J.L.
        • Garrison R.J.
        • Neaton J.D.
        • Castelli W.P.
        • Knoke J.D.
        • Jacobs D.R.
        • Bangdiwala S.
        • Tyroler H.A.
        High-density lipoprotein cholesterol and cardiovascular diseaseFour prospective American studies.
        Circulation. 1989; 79: 8-15
        • El Khoudary S.R.
        • Wang L.
        • Brooks M.M.
        • Thurston R.C.
        • Derby C.A.
        • Matthews K.A.
        Increase HDL-C level over the menopausal transition is associated with greater atherosclerotic progression.
        J. Clin. Lipidol. 2016; 10: 962-969
        • Bots M.L.
        • Elwood P.C.
        • Nikitin Y.
        • Salonen J.T.
        • Freire de Concalves A.
        • Inzitari D.
        • Sivenius J.
        • Benetou V.
        • Tuomilehto J.
        • Koudstaal P.J.
        • Grobbee D.E.
        Total and HDL cholesterol and risk of stroke. EUROSTROKE: a collaborative study among research centres in Europe.
        J. Epidemiol. Community Health. 2002; 56: i19-i24
        • El Khoudary S.R.
        • Hutchins P.M.
        • Matthews K.A.
        • Brooks M.M.
        • Orchard T.J.
        • Ronsein G.E.
        • Heinecke J.W.
        Cholesterol efflux capacity and subclasses of HDL particles in healthy women transitioning through menopause.
        J. Clin. Endocrinol. Metab. 2016; 101: 3419-3428
        • Zago V.
        • Sanguinetti S.
        • Brites F.
        • Berg G.
        • Verona J.
        • Basilio F.
        • Wikinski R.
        • Schreier L.
        Impaired high density lipoprotein antioxidant activity in healthy postmenopausal women.
        Atherosclerosis. 2004; 177: 203-210
        • Sacks F.M.
        • Jensen M.K.
        From high-density lipoprotein cholesterol to measurements of function: prospects for the development of tests for high-density lipoprotein functionality in cardiovascular disease.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: 487-499
        • Cho K.H.
        The current status of research on high-density lipoproteins (HDL): a paradigm shift from HDL quantity to HDL quality and HDL functionality.
        Int. J. Mol. Sci. 2022; 23
        • Allard-Ratick M.P.
        • Kindya B.R.
        • Khambhati J.
        • Engels M.C.
        • Sandesara P.B.
        • Rosenson R.S.
        • Sperling L.S.
        HDL: fact, fiction, or function?HDL cholesterol and cardiovascular risk.
        Eur J Prev Cardiol. 2021; 28: 166-173
        • Maas A.H.E.M.
        • Rosano G.
        • Cifkova R.
        • Chieffo A.
        • van Dijken D.
        • Hamoda H.
        • Kunadian V.
        • Laan E.
        • Lambrinoudaki I.
        • Maclaran K.
        • Panay N.
        • Stevenson J.C.
        • van Trotsenburg M.
        • Collins P.
        Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from european cardiologists, gynaecologists, and endocrinologists.
        Eur. Heart J. 2021; 42: 967-984
        • Gregersen I.
        • Høibraaten E.
        • Holven K.B.
        • Løvdahl L.
        • Ueland T.
        • Mowinckel M.C.
        • Dahl T.B.
        • Aukrust P.
        • Halvorsen B.
        • Sandset P.M.
        Effect of hormone replacement therapy on atherogenic lipid profile in postmenopausal women.
        Thromb. Res. 2019; 184: 1-7
        • Godsland I.F.
        Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974–2000.
        Fertil. Steril. 2001; 75: 898-915
        • Anagnostis P.
        • Bitzer J.
        • Cano A.
        • Ceausu I.
        • Chedraui P.
        • Durmusoglu F.
        • Erkkola R.
        • Goulis D.G.
        • Hirschberg A.L.
        • Kiesel L.
        • Lopes P.
        • Pines A.
        • van Trotsenburg M.
        • Lambrinoudaki I.
        • Rees M.
        Menopause symptom management in women with dyslipidemias: an EMAS clinical guide.
        Maturitas. 2020; 135: 82-88
        • Hemelaar M.
        • van der Mooren M.J.
        • Mijatovic V.
        • Bouman A.A.
        • Schijf C.P.
        • Kroeks M.V.
        • Franke H.R.
        • Kenemans P.
        Oral, more than transdermal, estrogen therapy improves lipids and lipoprotein(a) in postmenopausal women: a randomized, placebo-controlled study.
        Menopause. 2003; 10: 550-558
        • Goodman M.P.
        Are all estrogens created equal? A review of oral vs. transdermal therapy.
        J. Women's Health (Larchmt). 2012; 21: 161-169
        • Contreras I.
        • Parra D.
        Estrogen replacement therapy and the prevention of coronary heart disease in postmenopausal women.
        Am. J. Health Syst. Pharm. 2000; 57: 1963-1968
        • Feldman R.D.
        Sex-specific determinants of coronary artery disease and atherosclerotic risk factors: estrogen and beyond.
        Can. J. Cardiol. 2020; 36: 706-711
        • Jones D.R.
        • Schmidt R.J.
        • Pickard R.T.
        • Foxworthy P.S.
        • Eacho P.I.
        Estrogen receptor-mediated repression of human hepatic lipase gene transcription.
        J. Lipid Res. 2002; 43: 383-391
        • Jiang Y.
        • Tian W.
        The effects of progesterones on blood lipids in hormone replacement therapy.
        Lipids Health Dis. 2017; 16: 219
        • Feingold K.R.
        • Brinton E.A.
        • Grunfeld C.
        The effect of endocrine disorders on lipids and lipoproteins.
        in: Feingold K.R. Anawalt B. Boyce A. Chrousos G. de Herder W.W. Dhatariya K. Dungan K. Hershman J.M. Hofland J. Kalra S. Kaltsas G. Koch C. Kopp P. Korbonits M. Kovacs C.S. Kuohung W. Laferrère B. Levy M. McGee E.A. McLachlan R. Morley J.E. New M. Purnell J. Sahay R. Singer F. Sperling M.A. Stratakis C.A. Trence D.L. Wilson D.P. Endotext, MDText.com, Inc. Copyright © 2000-2022. MDText.com, Inc, South Dartmouth (MA)2000
        • W.G.f.t.W.s.H.I. Investigators
        Risks and benefits of estrogen plus progestin in healthy postmenopausal womenprincipal results from the women's health initiative randomized controlled trial.
        JAMA. 2002; 288: 321-333
        • Anderson G.L.
        • Limacher M.
        • Assaf A.R.
        • Bassford T.
        • Beresford S.A.
        • Black H.
        • Bonds D.
        • Brunner R.
        • Brzyski R.
        • Caan B.
        • Chlebowski R.
        • Curb D.
        • Gass M.
        • Hays J.
        • Heiss G.
        • Hendrix S.
        • Howard B.V.
        • Hsia J.
        • Hubbell A.
        • Jackson R.
        • Johnson K.C.
        • Judd H.
        • Kotchen J.M.
        • Kuller L.
        • LaCroix A.Z.
        • Lane D.
        • Langer R.D.
        • Lasser N.
        • Lewis C.E.
        • Manson J.
        • Margolis K.
        • Ockene J.
        • O'Sullivan M.J.
        • Phillips L.
        • Prentice R.L.
        • Ritenbaugh C.
        • Robbins J.
        • Rossouw J.E.
        • Sarto G.
        • Stefanick M.L.
        • Van Horn L.
        • Wactawski-Wende J.
        • Wallace R.
        • Wassertheil-Smoller S.
        Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial.
        JAMA. 2004; 291: 1701-1712
        • Anagnostis P.
        • Galanis P.
        • Chatzistergiou V.
        • Stevenson J.C.
        • Godsland I.F.
        • Lambrinoudaki I.
        • Theodorou M.
        • Goulis D.G.
        The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: a systematic review and meta-analysis.
        Maturitas. 2017; 99: 27-36
        • Wild R.A.
        • Rizzo M.
        • Clifton S.
        • Carmina E.
        Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis.
        Fertil Steril. 2011; 95 (1073-9.e1-11)
        • Diamanti-Kandarakis E.
        • Papavassiliou A.G.
        • Kandarakis S.A.
        • Chrousos G.P.
        Pathophysiology and types of dyslipidemia in PCOS.
        Trends Endocrinol. Metab. 2007; 18: 280-285
        • Kim J.J.
        • Choi Y.M.
        Dyslipidemia in women with polycystic ovary syndrome.
        Obstet. Gynecol. Sci. 2013; 56: 137-142
        • Meun C.
        • Gunning M.N.
        • Louwers Y.V.
        • Peters H.
        • Roos-Hesselink J.
        • Roeters van Lennep J.
        • Rueda Ochoa O.L.
        • Appelman Y.
        • Lambalk N.
        • Boersma E.
        • Kavousi M.
        • Fauser B.C.
        • Laven J.S.
        The cardiovascular risk profile of middle-aged women with polycystic ovary syndrome.
        Clin. Endocrinol. 2020; 92: 150-158
        • Echiburú B.
        • Crisosto N.
        • Maliqueo M.
        • Pérez-Bravo F.
        • de Guevara A.L.
        • Hernández P.
        • Cavada G.
        • Rivas C.
        • Clavel A.
        • Sir-Petermann T.
        Metabolic profile in women with polycystic ovary syndrome across adult life.
        Metabolism. 2016; 65: 776-782
        • Merz C.N.
        • Shaw L.J.
        • Azziz R.
        • Stanczyk F.Z.
        • Sopko G.
        • Braunstein G.D.
        • Kelsey S.F.
        • Kip K.E.
        • Cooper-DeHoff R.M.
        • Johnson B.D.
        • Vaccarino V.
        • Reis S.E.
        • Bittner V.
        • Hodgson T.K.
        • Rogers W.
        • Pepine C.J.
        Cardiovascular disease and 10-year mortality in postmenopausal women with clinical features of polycystic ovary syndrome.
        J. Women's Health (Larchmt). 2016; 25: 875-881
        • Schmidt J.
        • Landin-Wilhelmsen K.
        • Brännström M.
        • Dahlgren E.
        Cardiovascular disease and risk factors in PCOS women of postmenopausal age: a 21-year controlled follow-up study.
        J. Clin. Endocrinol. Metab. 2011; 96: 3794-3803
        • Honigberg M.C.
        • Zekavat S.M.
        • Aragam K.
        • Finneran P.
        • Klarin D.
        • Bhatt D.L.
        • Januzzi Jr., J.L.
        • Scott N.S.
        • Natarajan P.
        Association of premature natural and surgical menopause with incident cardiovascular disease.
        JAMA. 2019; 322: 2411-2421
        • Knauff E.A.H.
        • Westerveld H.E.
        • Goverde A.J.
        • Eijkemans M.J.
        • Valkenburg O.
        • van Santbrink E.J.P.
        • Fauser B.C.J.M.
        • van der Schouw Y.T.
        Lipid profile of women with premature ovarian failure.
        Menopause. 2008; 15
        • Gulhan I.
        • Bozkaya G.
        • Uyar I.
        • Oztekin D.
        • Pamuk B.O.
        • Dogan E.
        Serum lipid levels in women with premature ovarian failure.
        Menopause. 2012; 19
        • Carr M.C.
        • Brunzell J.D.
        Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk.
        J. Clin. Endocrinol. Metab. 2004; 89: 2601-2607
        • Kolovou G.D.
        • Anagnostopoulou K.K.
        • Pilatis N.D.
        • Giannopoulou M.
        • Hoursalas I.S.
        • Pavlidis A.N.
        • Adamopoulou E.
        • Valaora A.I.
        • Mikhailidis D.P.
        • Cokkinos D.V.
        The influence of natural menopause on postprandial lipemia in heterozygotes for familial hypercholesterolemia.
        J. Women's Health (Larchmt). 2004; 13: 1119-1126
        • Khoudary S.R.E.
        • Aggarwal B.
        • Beckie T.M.
        • Hodis H.N.
        • Johnson A.E.
        • Langer R.D.
        • Limacher M.C.
        • Manson J.E.
        • Stefanick M.L.
        • Allison M.A.
        Menopause transition and cardiovascular disease risk: implications for timing of early prevention: a scientific statement from the American Heart Association.
        Circulation. 2020; 142: e506-e532
        • Grundy S.M.
        • Stone N.J.
        • Bailey A.L.
        • Beam C.
        • Birtcher K.K.
        • Blumenthal R.S.
        • Braun L.T.
        • Faiella-Tommasino J.
        • Forman D.E.
        • Goldberg R.
        • Heidenreich P.A.
        • Hlatky M.A.
        • Jones D.W.
        • Lloyd-Jones D.
        • Lopez-Pajares N.
        • Ndumele C.E.
        • Orringer C.E.
        • Peralta C.A.
        • Saseen J.J.
        • Smith S.C.
        • Sperling L.
        • Virani S.S.
        • Yeboah J.
        • Ferranti S.D.
        2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines.
        Circulation. 2019; 139: e1082-e1143
        • Visseren F.L.J.
        • Mach F.
        • Smulders Y.M.
        • Carballo D.
        • Koskinas K.C.
        • Bäck M.
        • Benetos A.
        • Biffi A.
        • Boavida J.-M.
        • Capodanno D.
        • Cosyns B.
        • Crawford C.
        • Davos C.H.
        • Desormais I.
        • Angelantonio E.Di
        • Franco O.H.
        • Halvorsen S.
        • Hobbs F.D.R.
        • Hollander M.
        • Jankowska E.A.
        • Michal M.
        • Sacco S.
        • Sattar N.
        • Tokgozoglu L.
        • Tonstad S.
        • Tsioufis K.P.
        • van Dis I.
        • van Gelder I.C.
        • Wanner C.
        • Williams B.
        • E.S.D. Group
        2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC).
        European Heart Journal. 2021; 42: 3227-3337
        • Grundy S.M.
        • Vega G.L.
        Statin therapy for primary prevention in women: what is the role for coronary artery calcium?.
        J. Clin. Lipidol. 2022; 16: 376-382
        • Grossman D.C.
        • Curry S.J.
        • Owens D.K.
        • Barry M.J.
        • Davidson K.W.
        • Doubeni C.A.
        • Epling Jr., J.W.
        • Kemper A.R.
        • Krist A.H.
        • Kurth A.E.
        • Landefeld C.S.
        • Mangione C.M.
        • Phipps M.G.
        • Silverstein M.
        • Simon M.A.
        • Tseng C.W.
        Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: US preventive services task force recommendation statement.
        JAMA. 2017; 318: 2224-2233
        • Mach F.
        • Baigent C.
        • Catapano A.L.
        • Koskinas K.C.
        • Casula M.
        • Badimon L.
        • Chapman M.J.
        • Backer G.G.De
        • Delgado V.
        • Ference B.A.
        • Graham I.M.
        • Halliday A.
        • Landmesser U.
        • Mihaylova B.
        • Pedersen T.R.
        • Riccardi G.
        • Richter D.J.
        • Sabatine M.S.
        • Taskinen M.-R.
        • Tokgozoglu L.
        • Wiklund O.
        • E.S.D. Group
        2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS).
        European Heart Journal. 2019; 41: 111-188
        • Atar D.
        • Jukema J.W.
        • Molemans B.
        • Taub P.R.
        • Goto S.
        • Mach F.
        • CerezoOlmos C.
        • Underberg J.
        • Keech A.
        • Tokgözoğlu L.
        • Bonaca M.P.
        New cardiovascular prevention guidelines: how to optimally manage dyslipidaemia and cardiovascular risk in 2021 in patients needing secondary prevention?.
        Atherosclerosis. 2021; 319: 51-61
        • Kosmas C.E.
        • Pantou D.
        • Sourlas A.
        • Papakonstantinou E.J.
        • Echavarria Uceta R.
        • Guzman E.
        New and emerging lipid-modifying drugs to lower LDL cholesterol.
        drugsContext. 2021; 10
        • German C.A.
        • Shapiro M.D.
        Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9.
        BioDrugs. 2020; 34: 1-9
        • Powell J.
        • Piszczatoski C.
        Bempedoic acid: a new tool in the Battle against hyperlipidemia.
        Clin. Ther. 2021; 43: 410-420
        • Virani S.S.
        • Morris P.B.
        • Agarwala A.
        • Ballantyne C.M.
        • Birtcher K.K.
        • Kris-Etherton P.M.
        • Ladden-Stirling A.B.
        • Miller M.
        • Orringer C.E.
        • Stone N.J.
        2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia.
        J. Am. Coll. Cardiol. 2021; 78: 960-993
        • Yamashita S.
        • Masuda D.
        • Matsuzawa Y.
        Pemafibrate, a new selective PPARα modulator: drug concept and its clinical applications for dyslipidemia and metabolic diseases.
        Curr. Atheroscler. Rep. 2020; 22: 5
        • Kurabayashi T.
        • Okada M.
        • Tanaka K.
        Eicosapentaenoic acid effect on hyperlipidemia in menopausal Japanese women. The Niigata Epadel Study Group.
        Obstet Gynecol. 2000; 96: 521-528
        • Aguilar-Salinas C.A.
        • Gómez-Díaz R.A.
        • Corral P.
        New therapies for primary hyperlipidemia.
        J. Clin. Endocrinol. Metab. 2021; 107: 1216-1224
        • Nurmohamed N.S.
        • Navar A.M.
        • Kastelein J.J.P.
        New and emerging therapies for reduction of LDL-cholesterol and apolipoprotein B: JACC focus seminar 1/4.
        J. Am. Coll. Cardiol. 2021; 77: 1564-1575
        • Tall A.R.
        • Rader D.J.
        Trials and tribulations of CETP inhibitors.
        Circ. Res. 2018; 122: 106-112
        • Shufelt C.L.
        • Manson J.E.
        Menopausal hormone therapy and cardiovascular disease: the role of formulation, dose, and route of delivery.
        J Clin Endocrinol Metab. 2021; 106: 1245-1254
        • Archer D.F.
        • Altomare C.
        • Jiang W.
        • Cort S.
        Ospemifene's effects on lipids and coagulation factors: a post hoc analysis of phase 2 and 3 clinical trial data.
        Menopause. 2017; 24: 1167-1174
        • Van Heertum K.
        • Liu J.
        Differential effects of progestogens used for menopausal hormone therapy.
        Clin. Obstet. Gynecol. 2018; 61