Highlights
- •Diets rich in red and processed meat were associated with a later menopause.
- •Two different methods of assessing dietary patterns resulted in similar results.
- •This is the first study to explore the age at menopause in relation to dietary patterns.
Abstract
Objectives
To investigate prospective associations between dietary patterns and age of natural
menopause.
Study design and main outcome measures
Menopausal status was reported at two time points 4 years apart in the UK Women’s
Cohort Study (UKWCS). Diet of participants was measured using a 217-item food frequency
questionnaire at baseline. Principal component analysis (PCA) and reduced rank regression
(RRR) were used to derive dietary patterns for 13,916 women. Cox proportional hazards
regressions were used to estimate hazard ratios (HR) and 95 % confidence intervals
(CIs) for each pattern in relation to age at natural menopause, adjusting for potential
confounders.
Results
Five patterns were identified from the PCA, labelled as: ‘vegetables and legumes’,
‘animal proteins’, ‘fruits’, ‘fats and sweets’ and ‘low-fat products’. Three patterns
were derived from RRR: ‘sweets, pastries and puddings’, ‘low-fat dairy and meat’,
and ‘red meat and processed meat’. Women who scored 1 standard deviation higher on
the ‘animal proteins’ pattern were 6% more likely to experience a later natural menopause
over the study (HR = 0.94, 95 % CI: 0.90–0.97) compared with those who scored lower.
The ‘red meat and processed meat’ pattern similary predicted a 7% higher risk for
a later menopause during the study (HR = 0.93, 95 % CI: 0.87–1.00) per 1 standard
deviation.
Conclusions
Women whose diets are highly loaded with animal proteins, as well as red and processed
meats, are more likely to have a later natural menopause.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to MaturitasAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Office for National Statistics, Statistical Bulletin - National Life Tables, UK: 2014 to 2016.2017 (Accessed 18 January 2018)
- Guidelines diagnosis and management of menopause: summary of NICE guidance.BMJ. 2015; 351: 1-6https://doi.org/10.1136/bmj.h5746
- The timing of the age at which natural menopause occurs.Obstet. Gynecol. Clin. North Am. 2011; 38: 425-440https://doi.org/10.1016/j.ogc.2011.05.002
- Dietary patterns and bone mineral density in Brazilian postmenopausal women with osteoporosis: a cross-sectional study.Eur. J. Clin. Nutr. 2016; 70: 85-90https://doi.org/10.1038/ejcn.2015.27
- A critical review of predefined diet quality scores.Br. J. Nutr. 2007; 97: 219-231https://doi.org/10.1017/S0007114507250421
- A comparison of the dietary patterns derived by principal component analysis and cluster analysis in older Australians.Int. J. Behav. Nutr. Phys. Act. 2016; 13: 30https://doi.org/10.1186/s12966-016-0353-2
- Application of a new statistical method to derive dietary patterns in nutritional epidemiology.Am. J. Epidemiol. 2004; 159: 935-944https://doi.org/10.1093/aje/kwh134
- Can dietary patterns help us detect diet-disease associations?.Nutr. Res. Rev. 2005; 18: 241-248https://doi.org/10.1079/NRR2005107
- Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults.Public Health Nutr. 2016; 19: 195-203https://doi.org/10.1017/S1368980014003103
- Dietary and lifestyle predictors of age at natural menopause and reproductive span in the Shanghai Women’s Health Study.Menopause. 2008; 15: 924-933https://doi.org/10.1097/gme.0b013e3181786adc
- Reproductive and dietary determinants of the age at menopause in EPIC-Heidelberg.Maturitas. 2005; 52: 337-347https://doi.org/10.1016/j.maturitas.2005.05.013
- Factors affecting age of onset of menopause and determination of quality of life in menopause.Turk. J. Obstet. Gynecol. 2015; 12: 43-49https://doi.org/10.4274/tjod.79836
- Cohort profile: the UK Women’s Cohort Study (UKWCS).Int. J. Epidemiol. 2015; 0: 1-11https://doi.org/10.1093/ije/dyv173
- Association of diet with the onset of menopause in Japanese women.Am. J. Epidemiol. 2000; 152: 863-867https://doi.org/10.1093/aje/152.9.863
- Dietary intake and age at natural menopause: results from the UK Women’s Cohort Study.J. Epidemiol. Community Health. 2018; 72: 733-740https://doi.org/10.1136/jech-2017-209887
- Stability of dietary patterns assessed with reduced rank regression; the Zutphen Elderly Study.Nutr. J. 2014; 13: 30https://doi.org/10.1186/1475-2891-13-30
- Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study.Stat. Med. 2004; 23: 3803-3820https://doi.org/10.1002/sim.2098
- Dietary patterns and bone mineral density in Brazilian postmenopausal women with osteoporosis: a cross-sectional study.Eur. J. Clin. Nutr. 2016; 70: 85-90https://doi.org/10.1038/ejcn.2015.27
- Dietary patterns and survival in German postmenopausal breast cancer survivors.Br. J. Cancer. 2013; 108: 188-192https://doi.org/10.1038/bjc.2012.521
- Association of empirically derived dietary patterns with cardiovascular risk factors: a comparison of PCA and RRR methods.PLoS One. 2016; 11e0161298https://doi.org/10.1371/journal.pone.0161298
- Factors associated with onset of menopause in women aged 45–49.Maturitas. 1994; 19: 83-92https://doi.org/10.1016/0378-5122(94)90057-4
- Dietary protein intake and early menopause in the nurses’ health study II.Am. J. Epidemiol. 2018; 187: 270-277https://doi.org/10.1093/aje/kwx256
- Red meat intake and risk of breast cancer Among premenopausal women.Arch. Intern. Med. 2006; 166: 2253-2259https://doi.org/10.1001/archinte.166.20.2253
- Oestrogen levels in serum and urine of premenopausal women eating low and high amounts of meat.Public Health Nutr. 2014; 17: 2087-2093https://doi.org/10.1017/S1368980013002553
- Dietary patterns, the Alternate Healthy Eating Index and plasma sex hormone concentrations in postmenopausal women.Int. J. Cancer. 2007; 121: 803-809https://doi.org/10.1002/ijc.22728
- A traditional Mediterranean diet decreases endogenous estrogens in healthy postmenopausal women.Nutr. Cancer. 2006; 56: 253-259https://doi.org/10.1207/s15327914nc5602_18
- Premature ovarian failure: a review.Climacteric. 2007; 10: 11-22https://doi.org/10.1080/13697130601135672
- Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women.J. Clin. Endocrinol. Metab. 1996; 81: 1038-1045https://doi.org/10.1210/jcem.81.3.8772573
- Dietary patterns derived by reduced rank regression are inversely associated with type 2 diabetes risk across 5 ethnic groups in the multiethnic cohort.Curr. Dev. Nutr. 2017; 1e000620https://doi.org/10.3945/cdn.117.000620
- Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke.Br. J. Nutr. 2006; 95: 860-869https://doi.org/10.1079/BJN20061731
- Empirically derived eating patterns using factor or cluster analysis: a review.Nutr. Rev. 2004; 62: 177-203https://doi.org/10.1301/nr.2004.may.177-203
- Use of alternative time scales in Cox proportional hazard models: implications for time-varying environmental exposures.Stat. Med. 2012; 31: 3320-3327https://doi.org/10.1002/sim.5347
Article info
Publication history
Published online: October 09, 2020
Accepted:
October 6,
2020
Received in revised form:
September 15,
2020
Received:
May 20,
2020
Identification
Copyright
© 2020 Published by Elsevier B.V.