Advertisement

Chronic non-communicable disease risk calculators – An overview, part I

      Highlights

      • (Chronic) non-communicable diseases (NCD) are the main reason for disability and mortality in Western countries.
      • The most common NCD comprise cardiovascular, pulmonary and musculoskeletal diseases, type 2 diabetes mellitus, dementia and cancer.
      • (Online) NCD risk calculators are used for NCD screening and developing an individual health prevention and promotion strategy.
      • The review provides an overview of validated online available risk calculators.
      • Part (I) focusses on the NCD breast cancer, colorectal cancer, lung cancer and osteoporosis.
      • Part (II) will cover the NCD myocardial infarction, stroke, diabetes mellitus type 2 and dementia.

      Abstract

      This review identifies the different risk assessment tools that stratify the individual’s risk of four of the eight leading causes of death in women: breast cancer, lung cancer, colorectal cancer and osteoporosis. It will be followed by the publication of a second paper that summarizes the risk assessment tools for the other four leading causes of death (myocardial infarction, stroke, diabetes mellitus type 2 and dementia). The different tools were compared by their use of different variables and validation criteria. To corroborate the validation process, validation study papers were considered for each risk assessment tool.
      Four tables, one for each illness, were designed. The tables provide an outline for each risk assessment tool, which includes its inventor/company, required variables, advantages, disadvantages and validity. These tables simplify the comparison of the different tools and enable the identification of the most suitable one for each patient.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Riley L.
        • Gouda H.
        • Cowan M.
        World Health Organization, Noncommunicable diseases progress monitor, 2017.
        2017 (Accessed 16 March 2020)
      1. Noncommunicable diseases, (n.d.). https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. (Accessed 16 March 2020).

        • Palacios S.
        • Borrego R.S.
        • Forteza A.
        The importance of preventive health care in post-menopausal women.
        Maturitas. 2005; 52: 53-60https://doi.org/10.1016/j.maturitas.2005.06.013
        • WHO | Breast cancer
        WHO.
        2018
      2. Breast Cancer Risk Assessment Tool, (n.d.). https://bcrisktool.cancer.gov/. (Accessed 16 March 2020).

      3. BOADICEA Web Application, Cent. Cancer Genet. Epidemiol. (n.d.). https://ccge.medschl.cam.ac.uk/boadicea/boadicea-web-application/. (Accessed 16 March 2020).

      4. Cuzick-Tyrer Model, (n.d.). http://www.ems-trials.org/riskevaluator/. (Accessed 16 March 2020).

      5. BCSC Breast Cancer Risk Calculator, (n.d.). https://tools.bcsc-scc.org/BC5yearRisk/calculator.htm. (Accessed 9 April 2020).

      6. Radiology Ltd Claus Model Calculator, (n.d.). http://young-ridge-2035.herokuapp.com/. (Accessed 16 March 2020).

      7. Hereditary Cancer Quiz, (n.d.). https://www.hereditarycancerquiz.com/. (Accessed 17 March 2020).

      8. Penn II Model, (n.d.). https://pennmodel2.pmacs.upenn.edu/penn2/. (Accessed 17 March 2020).

      9. P. MacCallum, iPrevent Cancer Risk Assessment Tool, (n.d.). https://www.petermac.org/iprevent.

      10. C. Australia, Cancer Australia website, (n.d.). https://canceraustralia.gov.au/clinical-best-practice/gynaecological-cancers/fra-boc/evaluate. (Accessed 16 March 2020).

      11. GeneType, (n.d.). https://genetype.com/. (Accessed 16 March 2020).

      12. Cancer, (n.d.). https://www.who.int/news-room/fact-sheets/detail/cancer. (Accessed 17 March 2020).

        • de Koning H.J.
        • Meza R.
        • Plevritis S.K.
        • ten Haaf K.
        • Munshi V.N.
        • Jeon J.
        • Erdogan S.A.
        • Kong C.Y.
        • Han S.S.
        • van Rosmalen J.
        • Choi S.E.
        • Pinsky P.F.
        • de Gonzalez A.B.
        • Berg C.D.
        • Black W.C.
        • Tammemägi M.C.
        • Hazelton W.D.
        • Feuer E.J.
        • McMahon P.M.
        Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force.
        Ann. Intern. Med. 2014; 160: 311https://doi.org/10.7326/M13-2316
      13. MyLungRisk, (n.d.). https://secure2.utlnet.co.uk/mylungrisk/about.aspx. (Accessed 16 March 2020).

      14. Lung Cancer Screening Decision Tool | Memorial Sloan Kettering Cancer Center, (n.d.). http://nomograms.mskcc.org/Lung/Screening.aspx. (Accessed 17 March 2020).

      15. Department of Epidemiology, MD Anderson Cancer Cent. (n.d.). http://www3.mdanderson.org/depts/epidemiology/spitzLCtool/controller.cfc?method=getSubjectData. (Accessed 17 March 2020).

      16. Lung Cancer Risk Assessment Tool, (n.d.). https://www.aats.org/aatsimis/AATSWeb/Resources/Lung_Cancer_Screening/AATSWeb/Association/About/Resources/Lung_Cancer_Risk_Assessment_Tool.aspx?hkey=29f118a8-d7a6-4bcd-a9b3-7e85484881b8. (Accessed 17 March 2020).

      17. B. University, Lung Cancer Risk Calculators, Brock Univ. 2014 (2013). http://brocku.ca./lung-cancer-risk-calculator. (Accessed 17 March 2020).

      18. HUNT Lung Cancer Model Risk Calculator | Mens X Machina, (n.d.). http://mensxmachina.org/en/hunt-ntnu-lung-cancer-risk-calculator/. (Accessed 17 March 2020).

      19. Lung Cancer Risk Assessment Tool (RNOT and LCDRAT), (n.d.). https://analysistools.nci.nih.gov/lungCancerRiskAssessment/#/. (Accessed 3 April 2020).

      20. Lung Cancer Ontario, MyCancerIQ, (n.d.). https://www.mycanceriq.ca/Cancers/Lung.

      21. Colorectal cancer, (2020). http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/news/news/2012/2/early-detection-of-common-cancers/colorectal-cancer (Accessed 17 March 2020).

      22. Colorectal Cancer Risk Assessment Tool, (n.d.). https://www.cancer.gov/colorectalcancerrisk/ (Accessed 18 March 2020).

      23. CRC-Pro, (n.d.). https://riskcalc.org/ColorectalCancer/.

      24. Premm-Model Colorectal Cancer, (n.d.). http://premm.dfci.harvard.edu/.

      25. Risikotest | Darmkrebs.de, (n.d.). https://www.darmkrebs.de/risikotest. (Accessed 17 March 2020).

      26. Fragebogen Selbsttest | Stiftung LebensBlicke, (n.d.). https://www.lebensblicke.de/darmkrebs/selbsttest/. (Accessed 17 March 2020).

      27. My CancerIQ, My CancerIQ. (n.d.). https://www.mycanceriq.ca/Cancers/Colorectal.

      28. Osteoporosis.pdf, (n.d.). https://www.who.int/chp/topics/Osteoporosis.pdf. (Accessed 18 March 2020).

        • Darbà J.
        • Kaskens L.
        • Pérez-álvarez N.
        • Palacios S.
        • Neyro J.L.
        • Rejas J.
        Disability-adjusted-life-years losses in postmenopausal women with osteoporosis: a burden of illness study.
        BMC Public Health. 2015; : 1-10https://doi.org/10.1186/s12889-015-1684-7
      29. FRAX, (n.d.). https://www.sheffield.ac.uk/FRAX/. (Accessed 18 March 2020).

      30. Fracture Risk Score (FRISK) | Medicalalgorithms.com, (n.d.). http://medicalalgorithms.com//fracture-risk-frisk-score-of-henry-et-al. (Accessed 18 March 2020).

      31. Garvan Fracture Risk Calculator, (n.d.). https://www.garvan.org.au/promotions/bone-fracture-risk/calculator/. (Accessed 18 March 2020).

      32. FORE 10-Year Fracture Risk Calculator for Health Care Professionals, (n.d.). https://riskcalculator.fore.org/default.aspx. (Accessed 18 March 2020).

      33. QFracture-2016, (n.d.). https://qfracture.org/index.php. (Accessed 18 March 2020).

      34. Osteoporosis Risk SCORE Calculator, (n.d.). https://reference.medscape.com/calculator/osteoporosis-risk-score. (Accessed 18 March 2020).

      35. TOP, (n.d.). http://www.osteorheuma.ch/top/index.aspx. (Accessed 18 March 2020).

      36. Osteoporose-Risiko-Test - ‘Osteoswiss,’ (n.d.). https://www.osteoswiss.ch/index.php/de/links?id=156. (Accessed 18 March 2020).

      37. Osteoporoserisiko - Rheumaliga Schweiz, (n.d.). https://www.rheumaliga.ch/osteoporoserisiko. (Accessed 18 March 2020).

      38. IOF Risk check | International Osteoporosis Foundation, (n.d.). https://www.iofbonehealth.org/iof-one-minute-osteoporosis-risk-test. (Accessed 18 March 2020).

      39. J.M.G. Wilson, G. Jungner, Principles and Practice of Screening for Disease, (n.d.) 168.

        • Kuh D.
        • Cooper R.
        • Hardy R.
        • Richards M.
        • Ben-Shlomo Y.
        A Life Course Approach to Healthy Ageing.
        Oxford University Press, Oxford2014
        • Stute P.
        • Ceausu I.
        • Depypere H.
        • Lambrinoudaki I.
        • Mueck A.
        • Pérez-López F.R.
        • van der Schouw Y.T.
        • Senturk L.M.
        • Simoncini T.
        • Stevenson J.C.
        • Rees M.
        A model of care for healthy menopause and ageing: EMAS position statement.
        Maturitas. 2016; 92: 1-6https://doi.org/10.1016/j.maturitas.2016.06.018
        • Schueck A.
        • von Wolff M.
        • Bitterlich N.
        • Stute P.
        Awareness, use and applicability of online risk calculators for non-communicable diseases—a cross-sectional study.
        Maturitas. 2018; 113: 1-6https://doi.org/10.1016/j.maturitas.2018.03.015
        • Costantino J.P.
        • Gail M.H.
        • Pee D.
        • Anderson S.
        • Redmond C.K.
        • Benichou J.
        • Wieand H.S.
        Validation studies for models projecting the risk of invasive and total breast cancer incidence.
        J. Natl. Cancer Inst. 1999; 91: 1541-1548https://doi.org/10.1093/jnci/91.18.1541
        • Rockhill B.
        • Spiegelman D.
        • Byrne C.
        • Hunter D.J.
        • Colditz G.A.
        Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention.
        J. Natl. Cancer Inst. 2001; 93: 358-366https://doi.org/10.1093/jnci/93.5.358
        • Antoniou A.C.
        • Hardy R.
        • Walker L.
        • Evans D.G.
        • Shenton A.
        • Eeles R.
        • Shanley S.
        • Pichert G.
        • Izatt L.
        • Rose S.
        • Douglas F.
        • Eccles D.
        • Morrison P.J.
        • Scott J.
        • Zimmern R.L.
        • Easton D.F.
        • Pharoah P.D.P.
        Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics.
        J. Med. Genet. 2008; 45: 425-431https://doi.org/10.1136/jmg.2007.056556
        • Brentnall A.R.
        • Cuzick J.
        • Buist D.S.M.
        • Bowles E.J.A.
        Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density.
        JAMA Oncol. 2018; 4e180174https://doi.org/10.1001/jamaoncol.2018.0174
        • Tice J.A.
        • Cummings S.R.
        • Smith-Bindman R.
        • Ichikawa L.
        • Barlow W.E.
        • Kerlikowske K.
        Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model.
        Ann. Intern. Med. 2008; 148: 337https://doi.org/10.7326/0003-4819-148-5-200803040-00004
        • Tice J.A.
        • Miglioretti D.L.
        • Li C.-S.
        • Vachon C.M.
        • Gard C.C.
        • Kerlikowske K.
        Breast density and benign breast disease: risk assessment to identify women at high risk of breast cancer.
        J. Clin. Oncol. 2015; 33: 3137-3143https://doi.org/10.1200/JCO.2015.60.8869
      40. E.B. Claus, N. Risch, Genetic Analysis of Breast Cancer in the Cancer and Steroid Hormone Study, (n.d.) 11.

        • Frank T.S.
        • Deffenbaugh A.M.
        • Reid J.E.
        • Hulick M.
        • Ward B.E.
        • Lingenfelter B.
        • Gumpper K.L.
        • Scholl T.
        • Tavtigian S.V.
        • Pruss D.R.
        • Critchfield G.C.
        Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals.
        J. Clin. Oncol. 2002; 20: 1480-1490https://doi.org/10.1200/JCO.2002.20.6.1480
        • Schneegans S.M.
        • Rosenberger A.
        • Engel U.
        • Sander M.
        • Emons G.
        • Shoukier M.
        Validation of three BRCA1/2 mutation-carrier probability models Myriad, BRCAPRO and BOADICEA in a population-based series of 183 German families.
        Fam. Cancer. 2012; 11: 181-188https://doi.org/10.1007/s10689-011-9498-y
        • Panchal S.M.
        • Ennis M.
        • Canon S.
        • Bordeleau L.J.
        Selecting a BRCA risk assessment model for use in a familial cancer clinic.
        BMC Med. Genet. 2008; 9: 116https://doi.org/10.1186/1471-2350-9-116
        • Phillips K.-A.
        • Liao Y.
        • Milne R.L.
        • MacInnis R.J.
        • Collins I.M.
        • Buchsbaum R.
        • Weideman P.C.
        • Bickerstaffe A.
        • Nesci S.
        • Chung W.K.
        • Southey M.C.
        • Knight J.A.
        • Whittemore A.S.
        • Dite G.S.
        • Goldgar D.
        • Giles G.G.
        • Glendon G.
        • Cuzick J.
        • Antoniou A.C.
        • Andrulis I.L.
        • John E.M.
        • Daly M.B.
        • Buys S.S.
        • Hopper J.L.
        • Terry M.B.
        Accuracy of risk estimates from the iPrevent breast cancer risk assessment and management tool.
        JNCI Cancer Spectr. 2019; 3: 1-9https://doi.org/10.1093/jncics/pkz066
        • Olaide S.G.B.
        • Raji Y.
        • Duffy Stephen W.
        • Agbaje Olorunshola F.
        • Christiani David C.
        • Cassidy Adrian
        • Field John K.
        NIH public access - predictive accuracy of the Liverpool lung project risk model for stratifying patients forcomputed tomography screening for lung cancer.
        Bone. 2013; 23: 1-7https://doi.org/10.1038/jid.2014.371
        • Cronin K.A.
        • Gail M.H.
        • Zou Z.
        • Bach P.B.
        • Virtamo J.
        • Albanes D.
        Validation of a model of lung cancer risk prediction among smokers.
        J. Natl. Cancer Inst. 2006; 98: 637-640https://doi.org/10.1093/jnci/djj163
        • Bach P.B.
        • Elkin E.B.
        • Pastorino U.
        • Kattan M.W.
        • Mushlin A.I.
        • Begg C.B.
        • Parkin D.M.
        Benchmarking lung cancer mortality rates in current and former smokers.
        Chest. 2004; 126: 1742-1749https://doi.org/10.1378/chest.126.6.1742
        • Spitz M.R.
        • Hong W.K.
        • Amos C.I.
        • Wu X.
        • Schabath M.B.
        • Dong Q.
        • Shete S.
        • Etzel C.J.
        A risk model for prediction of lung cancer.
        J. Natl. Cancer Inst. 2007; 99: 715-726https://doi.org/10.1093/jnci/djk153
        • Li K.
        • Hüsing A.
        • Sookthai D.
        • Bergmann M.
        • Boeing H.
        • Becker N.
        • Kaaks R.
        Selecting high-risk individuals for lung cancer screening: a prospective evaluation of existing risk models and eligibility criteria in the German EPIC cohort.
        Cancer Prev. Res. (Phila. Pa.). 2015; 8: 777-785https://doi.org/10.1158/1940-6207.CAPR-14-0424
        • Hoggart C.
        • Brennan P.
        • Tjonneland A.
        • Vogel U.
        • Overvad K.
        • Østergaard J.N.
        • Kaaks R.
        • Canzian F.
        • Boeing H.
        • Steffen A.
        • Trichopoulou A.
        • Bamia C.
        • Trichopoulos D.
        • Johansson M.
        • Palli D.
        • Krogh V.
        • Tumino R.
        • Sacerdote C.
        • Panico S.
        • Boshuizen H.
        • Bueno-de-Mesquita H.B.
        • Peeters P.H.M.
        • Lund E.
        • Gram I.T.
        • Braaten T.
        • Rodríguez L.
        • Agudo A.
        • Sánchez-Cantalejo E.
        • Arriola L.
        • Chirlaque M.D.
        • Barricarte A.
        • Rasmuson T.
        • Khaw K.T.
        • Wareham N.
        • Allen N.E.
        • Riboli E.
        • Vineis P.
        A risk model for lung cancer incidence.
        Cancer Prev. Res. (Phila. Pa.). 2012; 5: 834-846https://doi.org/10.1158/1940-6207.CAPR-11-0237
        • Tammemägi M.C.
        • Katki H.A.
        • Hocking W.G.
        • Church T.R.
        • Caporaso N.
        • Kvale P.A.
        • Chaturvedi A.K.
        • Silvestri G.A.
        • Riley T.L.
        • Commins J.
        • Berg C.D.
        Selection criteria for lung-cancer screening.
        N. Engl. J. Med. 2013; 368: 728-736https://doi.org/10.1056/NEJMoa1211776
        • Tammemägi M.C.
        • Church T.R.
        • Hocking W.G.
        • Silvestri G.A.
        • Kvale P.A.
        • Riley T.L.
        • Commins J.
        • Berg C.D.
        Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts.
        PLoS Med. 2014; 11e1001764https://doi.org/10.1371/journal.pmed.1001764
        • Markaki M.
        • Tsamardinos I.
        • Langhammer A.
        • Lagani V.
        • Hveem K.
        • Røe O.D.
        A validated clinical risk prediction model for lung cancer in smokers of all ages and exposure types: a HUNT study.
        EBioMedicine. 2018; 31: 36-46https://doi.org/10.1016/j.ebiom.2018.03.027
        • Katki P.C.L.
        • Hormuzd A.
        • Stephanie Kovalchik A.
        • et al.
        HHS public access - implication of 9 risk prediction models for selectin ever-smokers for CT lung-cancer screening.
        Physiol. Behav. 2017; 176: 139-148https://doi.org/10.1016/j.physbeh.2017.03.040
        • Park Y.
        • Freedman A.N.
        • Gail M.H.
        • Pee D.
        • Hollenbeck A.
        • Schatzkin A.
        • Pfeiffer R.M.
        Validation of a colorectal cancer risk prediction model among white patients age 50 years and older.
        J. Clin. Oncol. 2009; 27https://doi.org/10.1200/JCO.2008.17.4813
        • Wells B.J.
        • Kattan M.W.
        • Cooper G.S.
        • Jackson L.
        • Koroukian S.
        ColoRectal cancer predicted risk online (CRC-PRO) calculator using data from the multi-ethnic cohort study.
        J. Am. Board Fam. Med. 2014; 27: 42-55https://doi.org/10.3122/jabfm.2014.01.130040
        • Kastrinos F.
        • Uno H.
        • Ukaegbu C.
        • Alvero C.
        • McFarland A.
        • Yurgelun M.B.
        • Kulke M.H.
        • Schrag D.
        • Meyerhardt J.A.
        • Fuchs C.S.
        • Mayer R.J.
        • Ng K.
        • Steyerberg E.W.
        • Syngal S.
        Development and validation of the PREMM5 model for comprehensive risk assessment of lynch syndrome.
        J. Clin. Oncol. 2017; 35: 2165-2172https://doi.org/10.1200/JCO.2016.69.6120
        • Lippuner K.
        • Johansson H.
        • Kanis J.A.
        • Rizzoli R.
        FRAX® assessment of osteoporotic fracture probability in Switzerland.
        Osteoporos. Int. 2010; 21: 381-389https://doi.org/10.1007/s00198-009-0975-1
        • Azagra R.
        • Roca G.
        • Encabo G.
        • Prieto D.
        • Aguyé A.
        • Zwart M.
        • Güell S.
        • Puchol N.
        • Gene E.
        • Casado E.
        • Sancho P.
        • Solà S.
        • Torán P.
        • Iglesias M.
        • Sabaté V.
        • Lápez-Expásito F.
        • Ortiz S.
        • Fernandez Y.
        • Diez-Perez A.
        Prediction of absolute risk of fragility fracture at 10 years in a Spanish population: validation of the WHO FRAX™ tool in Spain.
        BMC Musculoskelet. Disord. 2011; 12: 1-9https://doi.org/10.1186/1471-2474-12-30
        • Henry M.J.
        • Pasco J.A.
        • Sanders K.M.
        • Nicholson G.C.
        • Kotowicz M.A.
        Fracture risk (FRISK) score: geelong osteoporosis study.
        Radiology. 2006; 241: 190-196https://doi.org/10.1148/radiol.2411051290
        • Nguyen N.D.
        • Frost S.A.
        • Center J.R.
        • et al.
        Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks.
        Osteoporos. Int. 2008; : 1431-1444https://doi.org/10.1007/s00198-008-0588-0
        • Ahmed L.A.
        • Nguyen N.D.
        • Bjørnerem Å.
        • Joakimsen R.M.
        • Jørgensen L.
        • Størmer J.
        • Bliuc D.
        • Center J.R.
        • Eisman J.A.
        • Nguyen T.V.
        • Emaus N.
        External validation of the garvan nomograms for predicting absolute fracture risk: the tromsø study.
        PLoS One. 2014; 9e107695https://doi.org/10.1371/journal.pone.0107695
        • Lo J.C.
        • Pressman A.R.
        • Chandra M.
        • Ettinger B.
        Fracture risk tool validation in an integrated healthcare delivery system.
        Am. J. Manag. Care. 2011; 17: 7
        • Ettinger B.
        • Liu H.
        • Blackwell T.
        • Hoffman A.R.
        • Ensrud K.E.
        • Orwoll E.S.
        Validation of FRC, a fracture risk assessment tool, in a cohort of older men: the osteoporotic fractures in men (MrOS) study.
        J. Clin. Densitom. 2012; 15: 334-342https://doi.org/10.1016/j.jocd.2012.01.011
        • Hippisley-Cox J.
        • Coupland C.
        Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study.
        BMJ. 2012; 344 (e3427–e3427)https://doi.org/10.1136/bmj.e3427
        • Collins G.S.
        • Mallett S.
        • Altman D.G.
        Predicting risk of osteoporotic and hip fracture in the United Kingdom: prospective independent and external validation of QFractureScores.
        BMJ. 2011; 342 (d3651–d3651)https://doi.org/10.1136/bmj.d3651
        • Lydick E.
        • Cook K.
        • Turpin J.
        • Melton M.
        • Stine R.
        • Byrnes C.
        Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density.
        Am. J. Manag. Care. 1998; 4: 37-48