Advertisement

Early-life food deprivation and cognitive performance among older Europeans

      Highlights

      • Our results suggest that nutritional deprivation in early childhood is associated with poor later-life cognitive function.
      • Hunger experience in later childhood and adolescence may be protective to later-life cognition.
      • We also show that experiencing more years of hunger in early life may be associated with worse later cognitive function.
      • Weaker associations were demonstrated with late-life cognitive decline.
      • These findings stress the importance of early-life nutrition to brain aging.

      Abstract

      Background

      Early-life adversity, including food deprivation, has been linked with late-life cognitive function. Our aim was to explore the association between the early experience of hunger (the age at which it was experienced and its duration) and cognitive performance and decline among older Europeans.

      Methods

      Our sample comprised dementia-free individuals aged ≥65 years who participated in waves 3 and 4 of the Survey of Health, Ageing and Retirement in Europe (SHARE). Information on periods of hunger during the life course was gathered in wave 3 (2009; SHARELIFE). Cognitive performance was assessed using tests of memory, verbal fluency and numeracy in waves 4 (2011) and 5 (2013). Regression models were used to assess the relationship between the experience of hunger at different ages and its duration and cognitive performance and decline while adjusting for age, sex, education, lifestyle and health factors.

      Results

      Among a sample of 2131 individuals (mean age = 76.2 years; 50 % women), the experience of hunger when aged 0−4 years was associated with poorer immediate and delayed recall, fluency and impaired numeracy factors (B±SE=-0.58 ± 0.12; p < 0.001; B±SE=-0.74 ± 0.13; p < 0.001, B±SE=-1.60 ± 0.42; p < 0.001 and OR [95 % CI] = 0.57 [0.42−0.79], respectively). These results attenuated after controlling for duration of the experience of hunger but remained significant for immediate and delayed recall. The experience of hunger at ages 12−18 years was associated with better immediate recall, delayed recall and fluency (B±SE = 0.38 ± 0.15; p = 0.010; B±SE = 0.37 ± 0.17; p = 0.026, B±SE = 1.57 ± 0.53; p = 0.003, respectively). The associations of hunger with cognitive decline were similar but less robust.

      Conclusions

      Our findings suggest that severe nutritional deprivation in early childhood may be associated with poor cognitive function in later life, while food deprivation in later childhood and adolescence may be protective.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Casaletto K.B.
        • Elahi F.M.
        • Staffaroni A.M.
        • Walters S.
        • Contreras W.R.
        • Wolf A.
        • Dubal D.
        • Miller B.
        • Yaffe K.
        • Kramer J.H.
        Cognitive aging is not created equally: differentiating unique cognitive phenotypes in “normal” adults.
        Neurobiol. Aging. 2019; 77: 13-19https://doi.org/10.1016/j.neurobiolaging.2019.01.007
        • Cano A.
        Cognitive frailty, a new target for healthy ageing.
        Maturitas. 2015; 82: 139-140https://doi.org/10.1016/j.maturitas.2015.07.026
        • Whalley L.J.
        • Dick F.D.
        • McNeill G.
        A life-course approach to the aetiology of late-onset dementias.
        Lancet Neurol. 2006; 5: 87-96https://doi.org/10.1016/S1474-4422(05)70286-6
        • Seifan A.
        • Schelke M.
        • Obeng-Aduasare Y.
        • Isaacson R.
        Early life epidemiology of Alzheimer’s disease - a critical review.
        Neuroepidemiology. 2015; 45: 237-254https://doi.org/10.1159/000439568
        • Lesuis S.L.
        • Hoeijmakers L.
        • Korosi A.
        • de Rooij S.R.
        • Swaab D.F.
        • Kessels H.W.
        • Lucassen P.J.
        • Krugers H.J.
        Vulnerability and resilience to Alzheimer’s disease: early life conditions modulate neuropathology and determine cognitive reserve.
        Alzheimers Res. Ther. 2018; 10: 1-20https://doi.org/10.1186/s13195-018-0422-7
        • Wang X.J.
        • Xu W.
        • Li J.Q.
        • Cao X.P.
        • Tan L.
        • Yu J.T.
        Early-life risk factors for dementia and cognitive impairment in later life: a systematic review and meta-analysis.
        J. Alzheimers Dis. 2019; 67: 221-229https://doi.org/10.3233/JAD-180856
        • Kang Y.
        • Zhang Y.
        • Feng Z.
        • Liu M.
        • Li Y.
        • Yang H.
        • Wang D.
        • Zheng L.
        • Lou D.
        • Cheng D.
        • Chen C.
        Nutritional deficiency in early life facilitates aging-associated cognitive decline.
        Curr. Alzheimer Res. 2017; 14: 841-849
        • Xu H.
        • Zhang Z.
        • Li L.
        • Liu J.
        Early life exposure to China’s 1959-61 famine and midlife cognition.
        Int. J. Epidemiol. 2018; 47: 109-120https://doi.org/10.1093/ije/dyx222
        • Wang C.
        • An Y.
        • Yu H.
        • Feng L.
        • Liu Q.
        • Lu Y.
        • Wang H.
        • Xiao R.
        Association between exposure to the chinese famine in different stages of early life and decline in cognitive functioning in adulthood.
        Front. Behav. Neurosci. 2016; 10: 1-8https://doi.org/10.3389/fnbeh.2016.00146
        • Barnes L.L.
        • Wilson R.S.
        • Everson-Rose S.A.
        • Hayward M.D.
        • Evans D.A.
        • De Leon C.F.M.
        Effects of early-life adversity on cognitive decline in older African Americans and whites.
        Neurology. 2012; 79: 2321-2327https://doi.org/10.1212/WNL.0b013e318278b607
        • Ampaabeng S.K.
        • Tan C.M.
        The long-term cognitive consequences of early childhood malnutrition: the case of famine in Ghana.
        J. Health Econ. 2013; 32: 1013-1027https://doi.org/10.1016/j.jhealeco.2013.08.001
        • Börsch-Supan A.
        • Brandt M.
        • Hunkler C.
        • Kneip T.
        • Korbmacher J.
        • Malter F.
        • Schaan B.
        • Stuck S.
        • Zuber S.
        Data resource profile: the survey of health, ageing and retirement in Europe (SHARE).
        Int. J. Epidemiol. 2013; 42: 992-1001https://doi.org/10.1093/ije/dyt088
        • Zaninotto P.
        • Batty G.D.
        • Allerhand M.
        • Deary I.J.
        Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing.
        J. Epidemiol. Community Health. 2018; 72: 685-694https://doi.org/10.1136/jech-2017-210116
        • Iacus S.M.
        • King G.
        • Porro G.
        Causal inference without balance checking: coarsened exact matching.
        Polit. Anal. 2011; 20: 1-24https://doi.org/10.1093/pan/mpr013
        • Schoenberg M.R.
        • Dawson K.A.
        • Duff K.
        • Patton D.
        • Scott J.G.
        • Adams R.L.
        Test performance and classification statistics for the Rey Auditory Verbal Learning Test in selected clinical samples.
        Arch. Clin. Neuropsychol. 2006; 21: 693-703https://doi.org/10.1016/j.acn.2006.06.010
        • Karzmark P.
        Validity of the serial seven procedure.
        Int. J. Geriatr. Psychiatry. 2000; 15 (Accessed November 15, 2015): 677-679
        • Scholey A.B.
        • Harper S.
        • Kennedy D.O.
        Cognitive demand and blood glucose.
        Physiol. Behav. 2001; 73: 585-592https://doi.org/10.1016/S0031-9384(01)00476-0
        • Tombaugh T.N.
        • Kozak J.
        • Rees L.
        Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming.
        Arch. Clin. Neuropsychol. 1999; 14: 167-177https://doi.org/10.1016/S0887-6177(97)00095-4
        • Blom K.
        • Emmelot-Vonk M.H.
        • Koek H.L.
        The influence of vascular risk factors on cognitive decline in patients with dementia: a systematic review.
        Maturitas. 2013; 76: 113-117https://doi.org/10.1016/j.maturitas.2013.06.011
        • UNESCO
        International Standard Classification of Education: ISCED 1997, Paris, France.
        1997
        • Prince M.J.
        • Reischies F.
        • Beekman A.T.
        • Fuhrer R.
        • Jonker C.
        • Kivela S.L.
        • Lawlor B.A.
        • Lobo A.
        • Magnusson H.
        • Fichter M.
        • van Oyen H.
        • Roelands M.
        • Skoog I.
        • Turrina C.
        • Copeland J.R.
        Development of the EURO-D scale--a European Union initiative to compare symptoms of depression in 14 European centres.
        Br. J. Psychiatry. 1999; 174: 330-338https://doi.org/10.1192/bjp.174.4.330
        • Waber D.P.
        • Bryce C.P.
        • Fitzmaurice G.M.
        • Zichlin M.L.
        • McGaughy J.
        • Girard J.M.
        • Galler J.R.
        Neuropsychological outcomes at midlife following moderate to severe malnutrition in infancy.
        Neuropsychology. 2014; 28: 530-540https://doi.org/10.1037/neu0000058
        • Bedi K.S.
        Nutritional effects on neuron numbers.
        Nutr. Neurosci. 2003; 6: 141-152https://doi.org/10.1080/1028415031000098549
        • Rosnick C.B.
        • Small B.J.
        • McEvoy C.L.
        • Borenstein A.R.
        • Mortimer J.A.
        Negative life events and cognitive performance in a population of older adults.
        J. Aging Health. 2007; 19: 612-629https://doi.org/10.1177/0898264307300975
        • Comijs H.C.
        • van den Kommer T.N.
        • Minnaar R.W.M.
        • Penninx B.W.J.H.
        • Deeg D.J.H.
        Accumulated and differential effects of life events on cognitive decline in older persons: Depending on depression, baseline cognition, or ApoE ε4 status?.
        J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2011; 66B: i111-i120https://doi.org/10.1093/geronb/gbr019
        • Waber D.P.
        • Bryce C.P.
        • Girard J.M.
        • Zichlin M.
        • Fitzmaurice G.M.
        • Galler J.R.
        Impaired IQ and academic skills in adults who experienced moderate to severe infantile malnutrition: a 40-year study.
        Nutr. Neurosci. 2014; 17: 58-64https://doi.org/10.1179/1476830513Y.0000000061
        • Colman R.J.
        • Anderson R.M.
        • Johnson S.C.
        • Kastman E.K.
        • Simmons H.A.
        • Kemnitz J.W.
        • Weindruch R.
        Caloric restriction delays disease onset and mortality in rhesus monkeys.
        Science. 2009; 80: 201-204https://doi.org/10.1126/science.1173635
        • Mattison J.A.
        • Roth G.S.
        • Beasley T.M.
        • Tilmont E.M.
        • April H.
        • Herbert R.L.
        • Longo D.L.
        • Allison D.B.
        • Young J.E.
        • Barnard D.
        • Ward W.F.
        • Qi W.
        • Ingram D.K.
        • De R.
        Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study.
        Nature. 2012; 489: 318-321https://doi.org/10.1038/nature11432.Impact
        • Matyi S.
        • Jackson J.
        • Garrett K.
        • Deepa S.S.
        • Unnikrishnan A.
        The effect of different levels of dietary restriction on glucose homeostasis and metabolic memory.
        GeroScience. 2018; 40: 139-149https://doi.org/10.1007/s11357-018-0011-5
        • Lamport D.J.
        • Lawton C.L.
        • Mansfield M.W.
        • Dye L.
        Impairments in glucose tolerance can have a negative impact on cognitive function: a systematic research review.
        Neurosci. Biobehav. Rev. 2009; 33: 394-413https://doi.org/10.1016/j.neubiorev.2008.10.008
        • Mattison J.A.
        • Colman R.J.
        • Beasley T.M.
        • Allison D.B.
        • Kemnitz J.W.
        • Roth G.S.
        • Ingram D.K.
        • Weindruch R.
        • De Cabo R.
        • Anderson R.M.
        Caloric restriction improves health and survival of rhesus monkeys.
        Nat. Commun. 2017; 814063https://doi.org/10.1038/ncomms14063
        • De Boo H.A.
        • Harding J.E.
        The developmental origins of adult disease (Barker) hypothesis.
        Aust. New Zeal. J. Obstet. Gynaecol. 2006; 46: 4-14https://doi.org/10.1111/j.1479-828X.2006.00506.x
        • Tarry-adkins J.L.
        • Ozanne S.E.
        Nutrition in early life and age-associated diseases.
        Ageing Res. Rev. 2017; 39: 96-105https://doi.org/10.1016/j.arr.2016.08.003
        • Salmon A.B.
        • Dorigatti J.
        • Huber H.F.
        • Li C.
        • Nathanielsz P.W.
        Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions.
        Geroscience. 2018; 40: 269-278https://doi.org/10.1007/s11357-018-0024-0
        • Lye J.J.
        • Latorre E.
        • Lee B.P.
        • Bandinelli S.
        • Holley J.E.
        • Gutowski N.J.
        • Ferrucci L.
        • Harries L.W.
        Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline.
        GeroScience. 2019; 41: 561-573https://doi.org/10.1007/s11357-019-00100-3
        • Tarantini S.
        • Yabluchanskiy A.
        • Csipo T.
        • Fulop G.
        • Kiss T.
        Treatment with the poly (ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging.
        GeroScience. 2019; 41: 533-542https://doi.org/10.1007/s11357-019-00101-2
        • Logan S.
        • Royce G.H.
        • Owen D.
        • Farley J.
        • Ranjo-bishop M.
        • Sonntag W.E.
        • Deepa S.S.
        Accelerated decline in cognition in a mouse model of increased oxidative stress.
        GeroScience. 2019; 41: 591-607https://doi.org/10.1007/s11357-019-00105-y
        • Colon G.
        • Saccon T.
        • Schneider A.
        • Cavalcante M.B.
        • Huffman D.M.
        • Berryman D.
        • List E.
        • Ikeno Y.
        • Musi N.
        • Masternak M.M.
        The enigmatic role of growth hormone in age-related diseases, cognition, and longevity.
        GeroScience. 2019; 41: 759-774https://doi.org/10.1007/s11357-019-00096-w
        • Grimmig B.
        • Hudson C.
        • Moss L.
        • Weeber E.J.
        • Bickford P.C.
        Astaxanthin supplementation modulates cognitive function and synaptic plasticity in young and aged mice.
        GeroScience. 2019; 41: 77-87https://doi.org/10.1007/s11357-019-00051-9
        • Havari E.
        • Mazzonna F.
        Can we Trust People’s Statements on Their Childhood Circumstances?.
        2011
        • Batty G.D.
        • Lawlor D.A.
        • Macintyre S.
        • Clark H.
        • Leon D.A.
        Accuracy of adults’ recall of childhood social class: findings from the Aberdeen children of the 1950s study.
        J. Epidemiol. Community Health. 2005; 59: 898-903https://doi.org/10.1136/jech.2004.030932
        • Berney L.R.
        • Blane D.B.
        Collecting retrospective data: accuracy of recall after 50 years judged against historical records.
        Soc. Sci. Med. 1997; 45: 1519-1525https://doi.org/10.1016/S0277-9536(97)00088-9