Advertisement
Research Article| Volume 129, P68-75, November 2019

Comparison of the Physical Activity Frequency Questionnaire (PAFQ) with accelerometry in a middle-aged and elderly population: The CoLaus study

      Highlights

      • There are considerable differences between the estimates of physical activity derived from the PAFQ and an accelerometer.
      • Compared with accelerometry, the PAFQ overestimated total, light, moderate and vigorous physical activity, and underestimated sedentary behaviour.
      • The differences between the PAFQ and accelerometry were influenced by gender and age, but not by body mass index.

      Abstract

      Objective

      The Physical Activity Frequency Questionnaire (PAFQ) has been used in several studies, but its validation dates from 1998. We compared the PAFQ with accelerometry data for measuring levels of physical activity (PA) in a middle-aged and elderly population.

      Design

      Cross-sectional analysis was conducted with a sample of 1752 adults from the general population (50.7% female, age range 45.2–87.1 years) living in Switzerland. Participants completed the PAFQ and wore a wrist-worn accelerometer for 14 consecutive days. Spearman correlation, Lin’s concordance coefficient and Bland-Altman plots were performed to compare PAFQ and accelerometry data.

      Results

      Compared with the accelerometer, the PAFQ overestimated total, light, moderate and vigorous activity by a median [interquartile range] of 143 [34.5; 249], 72 [12; 141], 23 [−46; 100] and 13 [−1; 41] minutes/day, respectively, and underestimated sedentary behaviour by 123 [14; 238] minutes/day. Spearman’s correlation coefficients ranged from 0.171 for vigorous PA and 0.387 for total PA and sedentary behaviour. Lin’s concordance coefficients ranged from 0.044 for vigorous PA and 0.254 for moderate to vigorous PA. The difference between PAFQ and accelerometer results increased with increasing time spent at each activity level.

      Conclusion

      There is limited agreement between estimates of activity obtained by PAFQ and those obtained from accelerometers, suggesting that these tools measure activity differently. Although there is some degree of comparability, they should be considered as complementary tools to obtain comprehensive information on both individual and population activity levels.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Booth F.W.
        • Roberts C.K.
        • Laye M.J.
        Lack of exercise is a major cause of chronic diseases.
        Compr. Physiol. 2012; 2: 1143-1211
        • World Health Organisation
        Global Recommendations on Physical Activity for Health.
        (Geneva)2010
        • Ndahimana D.
        • Kim E.K.
        Measurement methods for physical activity and energy expenditure: a review.
        Clin. Nutr. Res. 2017; 6: 68-80
        • Sylvia L.G.
        • Bernstein E.E.
        • Hubbard J.L.
        • Keating L.
        • Anderson E.J.
        A practical guide to measuring physical activity.
        J. Acad. Nutr. Diet. 2014; 114: 199-208
        • Shephard R.J.
        Limits to the measurement of habitual physical activity by questionnaires.
        Br. J. Sports Med. 2003; 37 (discussion 206): 197-206
        • Sallis J.F.
        • Saelens B.E.
        Assessment of physical activity by self-report: status, limitations, and future directions.
        Res. Q. Exerc. Sport. 2000; 71: 1-14
        • Skender S.
        • Ose J.
        • Chang-Claude J.
        • Paskow M.
        • Brühmann B.
        • Siegel E.M.
        • Steindorf K.
        • Ulrich C.M.
        Accelerometry and physical activity questionnaires—a systematic review.
        BMC Public Health. 2016; 16: 515
        • Sasaki J.E.
        • da Silva K.S.
        • Gonçalves Galdino da Costa B.
        • John D.
        Measurement of physical activity using accelerometers.
        in: Luiselli J.K. Fischer A.J. Computer-Assisted and Web-Based Innovations in Psychology, Special Education, and Health. Academic Press, San Diego2016: 33-60 (Chapter 2)
        • Lee I.M.
        • Shiroma E.J.
        Using accelerometers to measure physical activity in large-scale epidemiologic studies: issues and challenges.
        Br. J. Sports Med. 2014; 48: 197-201
        • Kowalski K.
        • Rhodes R.
        • Naylor P.-J.
        • Tuokko H.
        • MacDonald S.
        Direct and indirect measurement of physical activity in older adults: a systematic review of the literature.
        Int. J. Behav. Nutr. Phys. Act. 2012; 9: 148
        • Prince S.A.
        • Adamo K.B.
        • Hamel M.E.
        • Hardt J.
        • Connor Gorber S.
        • Tremblay M.
        A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review.
        Int. J. Behav. Nutr. Phys. Act. 2008; 5: 56
        • Buman M.P.
        • Winkler E.A.
        • Kurka J.M.
        • Hekler E.B.
        • Baldwin C.M.
        • Owen N.
        • Ainsworth B.E.
        • Healy G.N.
        • Gardiner P.A.
        Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005–2006.
        Am. J. Epidemiol. 2014; 179: 323-334
        • Healy G.N.
        • Matthews C.E.
        • Dunstan D.W.
        • Winkler E.A.
        • Owen N.
        Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06.
        Eur. Heart J. 2011; 32: 590-597
        • Healy G.N.
        • Wijndaele K.
        • Dunstan D.W.
        • Shaw J.E.
        • Salmon J.
        • Zimmet P.Z.
        • Owen N.
        Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab).
        Diabetes Care. 2008; 31: 369-371
        • Qi Q.
        • Strizich G.
        • Merchant G.
        • Sotres-Alvarez D.
        • Buelna C.
        • Castaneda S.F.
        • Gallo L.C.
        • Cai J.
        • Gellman M.D.
        • Isasi C.R.
        • Moncrieft A.E.
        • Sanchez-Johnsen L.
        • Schneiderman N.
        • Kaplan R.C.
        Objectively measured sedentary time and cardiometabolic biomarkers in US Hispanic/Latino adults: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
        Circulation. 2015; 132: 1560-1569
        • Scholes S.
        • Coombs N.
        • Pedisic Z.
        • Mindell J.S.
        • Bauman A.
        • Rowlands A.V.
        • Stamatakis E.
        Age- and sex-specific criterion validity of the health survey for England Physical Activity and Sedentary Behavior Assessment Questionnaire as compared with accelerometry.
        Am. J. Epidemiol. 2014; 179: 1493-1502
        • Barwais F.A.
        • Cuddihy T.F.
        • Washington T.
        • Tomson L.M.
        • Brymer E.
        Development and validation of a new self-report instrument for measuring sedentary behaviors and light-intensity physical activity in adults.
        J. Phys. Act. Health. 2014; 11: 1097-1104
        • Gomersall S.R.
        • Pavey T.G.
        • Clark B.K.
        • Jasman A.
        • Brown W.J.
        Validity of a self-report recall tool for estimating sedentary behavior in adults.
        J. Phys. Act. Health. 2015; 12: 1485-1491
        • Bernstein M.
        • Sloutskis D.
        • Kumanyika S.
        • Sparti A.
        • Schutz Y.
        • Morabia A.
        Data-based approach for developing a physical activity frequency questionnaire.
        Am. J. Epidemiol. 1998; 147: 147-154
        • Firmann M.
        • Mayor V.
        • Vidal P.M.
        • Bochud M.
        • Pecoud A.
        • Hayoz D.
        • Paccaud F.
        • Preisig M.
        • Song K.S.
        • Yuan X.
        • Danoff T.M.
        • Stirnadel H.A.
        • Waterworth D.
        • Mooser V.
        • Waeber G.
        • Vollenweider P.
        The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome.
        BMC Cardiovasc. Disord. 2008; 8: 6
        • Bernstein M.S.
        • Costanza M.C.
        • Morabia A.
        Association of physical activity intensity levels with overweight and obesity in a population-based sample of adults.
        Prev. Med. 2004; 38: 94-104
        • Ainsworth B.E.
        • Haskell W.L.
        • Leon A.S.
        • Jacobs Jr., D.R.
        • Montoye H.J.
        • Sallis J.F.
        • Paffenbarger Jr., R.S.
        Compendium of physical activities: classification of energy costs of human physical activities.
        Med. Sci. Sports Exerc. 1993; 25: 71-80
        • Ainsworth B.E.
        • Haskell W.L.
        • Whitt M.C.
        • Irwin M.L.
        • Swartz A.M.
        • Strath S.J.
        • O’Brien W.L.
        • Bassett Jr., D.R.
        • Schmitz K.H.
        • Emplaincourt P.O.
        • Jacobs Jr., D.R.
        • Leon A.S.
        Compendium of physical activities: an update of activity codes and MET intensities.
        Med. Sci. Sports Exerc. 2000; 32: S498-504
        • Esliger D.W.
        • Rowlands A.V.
        • Hurst T.L.
        • Catt M.
        • Murray P.
        • Eston R.G.
        Validation of the GENEA accelerometer.
        Med. Sci. Sports Exerc. 2011; 43: 1085-1093
        • Gubelmann C.
        • Vollenweider P.
        • Marques-Vidal P.
        Of weekend warriors and couch potatoes: socio-economic determinants of physical activity in Swiss middle-aged adults.
        Prev. Med. 2017; 105: 350-355
        • Lin L.I.
        A concordance correlation coefficient to evaluate reproducibility.
        Biometrics. 1989; 45: 255-268
        • Helmerhorst H.J.F.
        • Brage S.
        • Warren J.
        • Besson H.
        • Ekelund U.
        A systematic review of reliability and objective criterion-related validity of physical activity questionnaires.
        Int. J. Behav. Nutr. Phys. Act. 2012; 9: 103
        • Lee P.H.
        • Macfarlane D.J.
        • Lam T.H.
        • Stewart S.M.
        Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review.
        Int. J. Behav. Nutr. Phys. Act. 2011; 8: 115
        • Rasmussen L.B.
        • Matthiessen J.
        • Biltoft-Jensen A.
        • Tetens I.
        Characteristics of misreporters of dietary intake and physical activity.
        Public Health Nutr. 2007; 10: 230-237
        • Adams S.A.
        • Matthews C.E.
        • Ebbeling C.B.
        • Moore C.G.
        • Cunningham J.E.
        • Fulton J.
        • Hebert J.R.
        The effect of social desirability and social approval on self-reports of physical activity.
        Am. J. Epidemiol. 2005; 161: 389-398
        • Sabia S.
        • van Hees V.T.
        • Shipley M.J.
        • Trenell M.I.
        • Hagger-Johnson G.
        • Elbaz A.
        • Kivimaki M.
        • Singh-Manoux A.
        Association between questionnaire- and accelerometer-assessed physical activity: the role of sociodemographic factors.
        Am. J. Epidemiol. 2014; 179: 781-790
        • Bonn S.E.
        • Bergman P.
        • Trolle Lagerros Y.
        • Sjölander A.
        • Bälter K.
        A validation study of the web-based physical activity questionnaire active-Q against the GENEA accelerometer.
        JMIR Res. Protoc. 2015; 4: e86
        • Dyrstad S.M.
        • Hansen B.H.
        • Holme I.M.
        • Anderssen S.A.
        Comparison of self-reported versus accelerometer-measured physical activity.
        Med. Sci. Sports Exerc. 2014; 46: 99-106
        • Friedenreich C.M.
        • Courneya K.S.
        • Neilson H.K.
        • Matthews C.E.
        • Willis G.
        • Irwin M.
        • Troiano R.
        • Ballard-Barbash R.
        Reliability and validity of the past year total physical activity questionnaire.
        Am. J. Epidemiol. 2006; 163: 959-970
        • Washburn R.A.
        • Jette A.M.
        • Janney C.A.
        Using age-neutral physical activity questionnaires in research with the elderly.
        J. Aging Health. 1990; 2: 341-356
        • Ekelund U.
        • Sepp H.
        • Brage S.
        • Becker W.
        • Jakes R.
        • Hennings M.
        • Wareham N.J.
        Criterion-related validity of the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adults.
        Public Health Nutr. 2006; 9: 258-265
        • Buchowski M.S.
        • Townsend K.M.
        • Chen K.Y.
        • Acra S.A.
        • Sun M.
        Energy expenditure determined by self-reported physical activity is related to body fatness.
        Obes. Res. 1999; 7: 23-33
        • Howitt C.
        • Brage S.
        • Hambleton I.R.
        • Westgate K.
        • Samuels T.A.
        • Rose A.M.
        • Unwin N.
        A cross-sectional study of physical activity and sedentary behaviours in a Caribbean population: combining objective and questionnaire data to guide future interventions.
        BMC Public Health. 2016; 16: 1036
        • Rowlands A.V.
        • Mirkes E.M.
        • Yates T.
        • Clemes S.
        • Davies M.
        • Khunti K.
        • Edwardson C.L.
        Accelerometer-assessed physical activity in epidemiology: are monitors equivalent?.
        Med. Sci. Sports Exerc. 2018; 50: 257-265
        • Trost S.G.
        • McIver K.L.
        • Pate R.R.
        Conducting accelerometer-based activity assessments in field-based research.
        Med. Sci. Sports Exerc. 2005; 37: S531-S543
        • Caspersen C.J.
        • Pereira M.A.
        • Curran K.M.
        Changes in physical activity patterns in the United States, by sex and cross-sectional age.
        Med. Sci. Sports Exerc. 2000; 32: 1601-1609
        • Rosenberger M.E.
        • Buman M.P.
        • Haskell W.L.
        • McConnell M.V.
        • Carstensen L.L.
        Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices.
        Med. Sci. Sports Exerc. 2016; 48: 457-465