Advertisement

Effects of red clover (Trifolium pratense) isoflavones on the lipid profile of perimenopausal and postmenopausal women—A systematic review and meta-analysis

      Highlights

      • Red clover has gained popularity as a treatment for menopausal symptoms because it is structurally and functionally similar to 17-estradiol.
      • The results of this systematic review and meta-analysis suggest a favourable effect of red clover on lipid metabolism.
      • Taking Trifolium pratense during menopause can modify abnormal cholesterol levels.

      Abstract

      Aim

      The aim of this systematic review and meta-analysis was to clarify the effect of a specific standardised extract of red clover (Trifolium pratense) on the lipid profile of perimenopausal and postmenopausal women.

      Methods

      Medline (PubMed), EMBASE, and Cochrane Library electronic databases were searched for papers in English reporting randomized controlled trials published up to 2017. Reference lists from those papers were checked for further relevant publications. Studies were identified and reviewed for their eligibility for inclusion in this review. The changes from baseline in the levels of individual components of the lipid profiles were used to assess differences between the active treatment and placebo groups. Weighted mean differences and 95 % confidence intervals were calculated for continuous data using a random-effects model.

      Results

      Ten eligible studies (twelve comparisons) with 910 peri- and postmenopausal women were selected for systematic review. The meta-analysis showed changes in serum levels: total cholesterol, −0.29 (95 % CI: −0.53 to −0.06) mmol/L [–11.21 (95 % CI: –20.49 to –13.92) mg/dL], p = 0.0136; LDL-cholesterol, −0.13 (95 % CI: −0.35 to 0.09) mmol/L [–5.02 (95 % CI: –13.53 to 3.48) mg/dL], p = 0.2418; triglycerides, −0.15 (95 % CI: −0.32 to 0.01) mmol/L [–13.28 (95 % CI: –28.34 to 0.88) mg/dL], p = 0.0592; and HDL-cholesterol, 0.14 (95 % CI: −0.08 to 0.36) mmol/L [5.41 (95 % CI: –3.09–13.92) mg/dL], p = 0.2103. TheI2 statistic ranged from 87.95%–98.30 %, indicating significant heterogeneity.

      Conclusions

      The results suggest that a red clover extract is efficacious in reducing the concentrations of total cholesterol; however, changes in HDL-C, LDL-C and triglycerides are not as pronounced. Potentially, this means that women takingTrifolium pratense for menopausal symptoms can derive additional benefits from the plant’s specific effect that corrects abnormal cholesterol levels. Additional studies are needed to assess its effects on post-menopausal women.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Burger H.
        The menopausal transition‒endocrinology.
        J. Sex. Med. 2008; 5: 2266-2273https://doi.org/10.1111/j.1743-6109.2008.00921.x
        • Burger H.G.
        • Hale G.E.
        • Robertson D.M.
        • Dennerstein L.
        A review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project.
        Hum. Reprod. Update. 2007; 13: 559-565https://doi.org/10.1093/humupd/dmm020
        • Nerbrand C.
        • Lidfeldt J.
        • Nyberg P.
        • Schersten B.
        • Samsioe G.
        Serum lipids and lipoproteins in relation to endogenous and exogenous female sex steroids and age, The Women’s Health in the Lund Area (WHILA) study.
        Maturitas. 2004; 48: 161-169
        • Anagnostis P.
        • Stevenson J.C.
        • Crook D.
        • Johnston D.G.
        • Godsland I.F.
        Effects of menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions.
        Maturitas. 2015; 81: 62-68https://doi.org/10.1016/j.maturitas.2015.02.262
        • de Kat A.C.
        • Dam V.
        • Onland-Moret N.C.
        • Eijkemans M.J.
        • Broekmans F.J.
        • van der Schouw Y.T.
        Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study.
        BMC Med. 2017; 15: 2https://doi.org/10.1186/s12916-016-0762-8
        • Godsland I.F.
        Effects of postmenopausal hormone replacement therapy on lipid, lipoprotein, and apolipoprotein (a) concentrations: analysis of studies published from 1974-2000.
        Fertil. Steril. 2001; 75: 898-915https://doi.org/10.1016/S0015-0282(01)01699-5
        • Casanova G.
        • Bossardi Ramos R.
        • Ziegelmann P.
        • Spritzer P.M.
        Effects of low-dose versus placebo or conventional-dose postmenopausal hormone therapy on variables related to cardiovascular risk: a systematic review and meta-analyses of randomized clinical trials.
        J. Clin. Endocrinol. Metab. 2015; 100: 1028-1037https://doi.org/10.1210/jc.2014-3301
        • Ki E.Y.
        • Hur S.Y.
        • Park J.S.
        • Do Han K.
        • Park Y.G.
        Differences in the lipid profile and hormone replacement therapy use in Korean postmenopausal women: the Korea National Health and Nutrition Examination Survey (KNHANES) 2010-2012.
        Arch. Gynecol. Obstet. 2016; 294: 165-173https://doi.org/10.1007/s00404-015-3982-9
        • Mintziori G.
        • Lambrinoudaki I.
        • Goulis D.G.
        • Ceausu I.
        • Depypere H.
        • Erel C.T.
        • Pérez-López F.R.
        • Schenck-Gustafsson K.
        • Simoncini T.
        • Tremollieres F.
        • Rees E.
        EMAS position statement: non-hormonal management of menopausal vasomotor symptoms.
        Maturitas. 2015; 81: 410-413https://doi.org/10.1016/j.maturitas.2015.04.009
        • Taylor M.
        Complementary and alternative approaches to menopause.
        Endocrinol. Metab. Clin. N. Am. 2015; 44: 619-648https://doi.org/10.1016/j.ecl.2015.05.008
        • Vitale S.G.
        • Caruso S.
        • Rapisarda A.M.C.
        • Cianci S.
        • Cianci A.
        Isoflavones, calcium, vitamin D and inulin improve quality of life, sexual function, body composition and metabolic parameters in menopausal women: result from a prospective, randomized, placebo-controlled, parallel-group study.
        Menopause Rev. 2018; 17: 32-38https://doi.org/10.5114/pm.2018.73791
        • Cianci A.
        • Colacurci N.
        • Paoletti A.M.
        • Perino A.
        • Cicinelli E.
        • Maffei S.
        • Di Martino M.
        • Daguati R.
        • Stomati M.
        • Pilloni M.
        • Vitale S.G.
        • Ricci E.
        • Parazzini F.
        Soy isoflavones, inulin, calcium, and vitamin D3 in post-menopausal hot flushes: an observational study.
        Clin. Exp. Obstet. Gynecol. 2015; 42: 743-745https://doi.org/10.12891/ceog2008.2015
        • Bevilacqua M.
        • Righini V.
        • Certan D.
        • Gandolini G.
        • Alemanni M.
        Effect of a mixture of calcium, vitamin D, inulin and soy isoflavones on bone metabolism in post-menopausal women: a retrospective analysis.
        Aging Clin. Exp. Res. 2013; 25: 611-617https://doi.org/10.1007/s40520-013-0093-y
        • Poluzzi E.
        • Piccinni C.
        • Raschi E.
        • Rampa A.
        • Recanatini M.
        • De Ponti F.
        Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective.
        Curr. Med. Chem. 2014; 21: 417-436https://doi.org/10.2174/09298673113206660297
        • Tsao R.
        • Papadopoulos Y.
        • Yang R.
        • Young J.C.
        • McRae K.
        Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages.
        J. Agric. Food Chem. 2006; 54: 5797-5805https://doi.org/10.1021/jf0614589
        • Booth N.L.
        • Overk C.R.
        • Yao P.
        • Burdette J.E.
        • Nikolic D.
        • Chen S.N.
        • Bolton J.L.
        • van Breemen R.B.
        • Pauli G.F.
        • Farnsworth N.R.
        The chemical and biologic profile of a red clover (Trifolium pratense L.) phase II clinical extract.
        J. Altern. Complement. Med. 2006; 12: 133-139https://doi.org/10.1089/acm.2006.12.133
        • Tolleson W.H.
        • Doerge D.R.
        • Churchwell M.I.
        • Marques M.M.
        • Roberts D.W.
        Metabolism of biochanin A and formononetin by human liver microsomes in vitro.
        J. Agric. Food Chem. 2002; 50: 4783-4790https://doi.org/10.1021/jf025549r
        • Mu H.
        • Bai Y.H.
        • Wang S.T.
        • Zhu Z.M.
        • Zhang Y.W.
        Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover).
        Phytomedicine. 2009; 16: 314-319https://doi.org/10.1016/j.phymed.2008.07.005
        • Pakalapati G.
        • Li L.
        • Gretz M.
        • Koch E.
        • Wink M.
        Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats.
        Phytomedicine. 2009; 16: 845-855https://doi.org/10.1016/j.phymed.2009.03.003
        • Samman S.
        • Lyons-Wall P.M.
        • Chan G.S.
        • Smith S.J.
        • Petocz P.
        The effect of supplementation with isoflavones on plasma lipids and oxidisability of low density lipoprotein in premenopausal women.
        Atherosclerosis. 1999; 147: 277-283https://doi.org/10.1016/S0021-9150(99)00196-3
        • Clifton-Bligh P.B.
        • Baber R.J.
        • Fulcher G.R.
        • Nery M.L.
        • Moreton T.
        The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolizm.
        Menopause. 2001; 8: 259-265
        • Blakesmith S.J.
        • Lyons-Wall P.M.
        • George C.
        • Joannou G.E.
        • Petocz P.
        • Samman S.
        Effects of supplementation with purified red clover (Trifolium pratense) isoflavones on plasma lipids and insulin resistance in healthy premenopausal women.
        Br. J. Nutr. 2003; 89: 467-474https://doi.org/10.1079/BJN2002807
        • Nestel P.J.
        • Pomeroy S.
        • Kay S.
        • Komesaroff P.
        • Behrsing J.
        • Cameron J.D.
        • West L.
        Isoflavones from red clover improve systemic arterial compliance but not plasma lipids in menopausal women.
        J. Clin. Endocrinol. Metab. 1999; 84: 895-898https://doi.org/10.1210/jcem.84.3.5561
        • Campbell M.J.
        • Woodside J.V.
        • Honour J.W.
        • Morton M.S.
        • Leathem A.J.C.
        Effect of red clover-derived isoflavone supplementation on insulin-like growth factor, lipid and antioxidant status in healthy female volunteers: a pilot study.
        Eur. J. Clin. Nutr. 2004; 58: 173-179https://doi.org/10.1038/sj.ejcn.1601764
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gøtzsche P.C.
        • Ioannidis J.P.
        • Clarke M.
        • Devereaux P.J.
        • Kleijnen J.
        • Moher D.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.
        BMJ. 2009; 339: b2700https://doi.org/10.1136/bmj.b2700
        • Higgins J.P.
        • Altman D.G.
        • Gøtzsche P.C.
        • Jüni P.
        • Moher D.
        • Oxman A.D.
        • Savovic J.
        • Schulz K.F.
        • Weeks L.
        • Sterne J.A.
        • Cochrane Bias Methods Group; Cochrane Statistical Methods Group
        The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: 5928https://doi.org/10.1136/bmj.d5928
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634https://doi.org/10.1136/bmj.315.7109.629
        • Higgins J.P.T.
        • Deeks J.J.
        Selecting studies and collecting data.
        in: Higgins J.P.T. Green S. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration and John Wiley & Sons Ltd, Chichester2008: 172-178
        • Follmann D.
        • Elliott P.
        • Suh I.
        • Cutler J.
        Variance imputation for overviews of clinical trials with continuous response.
        J. Clin. Epidemiol. 1992; 45: 769-773
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control. Clin. Trials. 1986; 7: 177-188
        • Higgins J.P.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat. Med. 2002; 21: 1539-1558https://doi.org/10.1002/sim.1186
        • Baker W.L.
        • White C.M.
        • Cappelleri J.C.
        • Kluger J.
        • Coleman C.I.
        • Health Outcomes, Policy, and Economics (HOPE) Collaborative Group
        Understanding heterogeneity in meta-analysis: the role of meta-regression.
        Int. J. Clin. Pract. 2009; 63: 1426-1434https://doi.org/10.1111/j.1742-1241.2009.02168.x
        • Knight D.C.
        • Howes J.B.
        • Eden J.A.
        The effect of Promensil, an isoflavone extract, on menopausal symptoms.
        Climacteric. 1999; 2: 79-84https://doi.org/10.3109/13697139909025570
        • Hale G.E.
        • Hughes C.L.
        • Robboy S.J.
        • Agarwal S.K.
        • Bievre M.
        A double-blind randomized study on the effects of red clover isoflavones on the endometrium.
        Menopause. 2001; 8: 338-346
        • Atkinson C.
        • Oosthuizen W.
        • Scollen S.
        • Loktionov A.
        • Day N.E.
        • Bingham S.A.
        Modest protective effects of isoflavones from a red clover derived dietary supplement on cardiovascular disease risk factors in perimenopausal women, and evidence of an interaction with ApoE genotype in 49-65 year old women.
        J. Nutr. 2004; 134: 1759-1764https://doi.org/10.1093/jn/134.7.1759
        • Schult T.M.
        • Ensrud K.E.
        • Blackwell T.
        • Ettinger B.
        • Wallace R.
        • Tice J.A.
        Effect of isoflavones on lipids and bone turnover markers in menopausal women.
        Maturitas. 2004; 48: 209-218https://doi.org/10.1016/j.maturitas.2003.09.027
        • Hidalgo L.A.
        • Chedraui P.A.
        • Morocho N.
        • Ross S.
        • San Miguel G.
        The effect of red clover isoflavones on menopausal symptoms, lipids and vaginal cytology in menopausal women: a randomized, double-blind, placebo-controlled study.
        Gynecol. Endocrinol. 2005; 21: 257-264https://doi.org/10.1080/09513590500361192
        • Terzic M.M.
        • Dotlic J.
        • Maricic S.
        • Mihailovic T.
        • Tosic-Race B.
        Influence of red clover-derived isoflavones on serum lipid profile in postmenopausal women.
        J. Obstet. Gynaecol. Res. 2009; 35: 1091-1095https://doi.org/10.1111/j.1447-0756.2009.001059.x
        • Terzic M.
        • Micic J.
        • Dotlic J.
        • Maricic S.
        • Mihailovic T.
        • Knezevic N.
        Impact of phytoestrogens on serum lipids in postmenopausal women, Geburtsh.
        Frauenheilk. 2012; 72: 527-531https://doi.org/10.1055/s-0031-1298624
        • Clifton-Bligh P.B.
        • Nery M.L.
        • Clifton-Bligh R.J.
        • Visvalingam S.
        • Fulcher G.R.
        • Byth K.
        • Baber R.
        Red clover isoflavones enriched with formononetin lower serum LDL cholesterol—a randomized, double-blind, placebo-controlled study.
        Eur. J. Clin. Nutr. 2015; 69: 134-142https://doi.org/10.1038/ejcn.2014.207
        • Lambert M.N.T.
        • Thorup A.C.
        • Hansen E.S.S.
        • Jeppesen P.B.
        Combined red clover isoflavones and probiotics potently reduce menopausal vasomotor symptoms.
        PLoS One. 2017; 12e0176590https://doi.org/10.1371/journal.pone.0176590
        • Lambert M.N.T.
        • Thybo C.B.
        • Lykkeboe S.
        • Rasmussen L.M.
        • Frette X.
        • Christensen L.P.
        • Jeppesen P.B.
        Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial.
        Am. J. Clin. Nutr. 2017; 106: 909-920https://doi.org/10.3945/ajcn.117.153353
        • Luís Â.
        • Domingues F.
        • Pereira L.
        Effects of red clover on perimenopausal and postmenopausal women’s blood lipid profile: a meta-analysis.
        Climacteric. 2018; 21: 446-453https://doi.org/10.1080/13697137.2018.1501673
        • Howes J.B.
        • Sullivan D.
        • Lai N.
        • Nestel P.
        • Pomeroy S.
        • West L.
        • Eden J.A.
        • Howes L.G.
        The effects of dietary supplementation with isoflavones from red clover on the lipoprotein profiles of post menopausal women with mild to moderate hypercholesterolaemia.
        Atherosclerosis. 2000; 152: 143-147https://doi.org/10.1016/S0021-9150(99)00437-2
        • Howes J.B.
        • Tran D.
        • Brillante D.
        • Howes L.G.
        Effects of dietary supplementation with isoflavones from red clover on ambulatory blood pressure and endothelial function in postmenopausal type 2 diabetes.
        Diabetes Obes. Metab. 2003; 5: 325-332https://doi.org/10.1046/j.1463-1326.2003.00282.x
        • Andres S.
        • Hansen U.
        • Niemann B.
        • Palavinskas R.
        • Lampen A.
        Determination of the isoflavone composition and estrogenic activity of commercial dietary supplements based on soy or red clover.
        Food Funct. 2015; 6: 2017-2025https://doi.org/10.1039/c5fo00308c
        • Budryn G.
        • Gałązka-Czarnecka I.
        • Brzozowska E.
        • Grzelczyk J.
        • Mostowski R.
        • Żyżelewicz D.
        • Cerón-Carrasco J.P.
        • Pérez-Sánchez H.
        Evaluation of estrogenic activity of red clover (Trifolium pratense L.) sprouts cultivated under different conditions by content of isoflavones, calorimetric study and molecular model ling.
        Food Chem. 2018; 245: 324-336https://doi.org/10.1016/j.foodchem.2017.10.100
        • Anderson J.J.
        • Anthony M.
        • Messina M.
        • Garne S.C.
        Effects of phyto-oestrogens on tissues.
        Nutr. Res. Rev. 1999; 12: 75-116https://doi.org/10.1079/095442299108728875
        • Oseni T.
        • Patel R.
        • Pyle J.
        • Craig Jordan V.
        Selective estrogen receptor modulators and phytoestrogens.
        Planta Med. 2008; 74: 1656-1665https://doi.org/10.1055/s-0028-1088304
        • Mueller M.
        • Hobiger S.
        • Jungbauer A.
        Red clover extract: a source for substances that activate peroxisome proliferator-activated receptor alpha and ameliorate the cytokine secretion profile of lipopolysaccharide-stimulated macrophages.
        Menopause. 2010; 17: 379-387https://doi.org/10.1097/gme.0b013e3181c94617
        • Qiu L.
        • Chen T.
        • Zhong F.
        • Hong Y.
        • Chen L.
        • Ye H.
        Red clover extract exerts antidiabetic and hypolipidemic effects in db/db mice.
        Exp. Ther. Med. 2012; 4: 699-704https://doi.org/10.3892/etm.2012.658
        • Lefebvre P.
        • Chinetti G.
        • Fruchart J.C.
        • Staels B.
        Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis.
        J. Clin. Invest. 2006; 116: 571-580https://doi.org/10.1172/JCI27989
        • Amput P.
        • McSweeney C.
        • Palee S.
        • Phrommintikul A.
        • Chattipakorn S.C.
        • Chattipakorn N.
        The effects of proprotein convertase subtilisin/kexin type 9 inhibitors on lipid metabolism and cardiovascular function.
        Biomed. Pharmacother. 2019; 109: 1171-1180https://doi.org/10.1016/j.biopha.2018.10.138
        • Ghosh M.
        • Gälman C.
        • Rudling M.
        • Angelin B.
        Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol.
        J. Lipid Res. 2015; 56: 463-469https://doi.org/10.1194/jlr.M055780
        • Levy E.
        • Ben Djoudi Ouadda A.
        • Spahis S.
        • Sane A.T.
        • Garofalo C.
        • Grenier É.
        • Emonnot L.
        • Yara S.
        • Couture P.
        • Beaulieu J.F.
        • Ménard D.
        • Seidah N.G.
        • Elchebly M.
        PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells.
        Atherosclerosis. 2013; 227: 297-306https://doi.org/10.1016/j.atherosclerosis.2013.01.023
        • Wang M.F.
        • Yamamoto S.
        • Chung H.M.
        • Chung S.Y.
        • Miyatani S.
        • Mori M.
        • Okita T.
        • Sugano M.
        Antihypercholesterolemic effect of undigested fraction of soybean protein in young female volunteers.
        J. Nutr. Sci. Vitaminol. (Tokyo). 1995; 41: 187-195