Advertisement
Research Article| Volume 121, P28-34, March 2019

Gait speed assessed by a 4-m walk test is not representative of daily-life gait speed in community-dwelling adults

      Highlights

      • The 4-m gait speed corresponds to the high end of daily-life gait speed.
      • The 4-m gait speed is very weakly correlated with daily-life gait speed.
      • The 4-m and daily-life gait speeds represent different constructs of physical function.

      Abstract

      Objectives: Standardized tests of gait speed are regarded as being of clinical value, but they are typically performed under optimal conditions, and may not reflect daily-life gait behavior. The aim of this study was to compare 4-m gait speed to the distribution of daily-life gait speed.
      Study design: The cross-sectional Grey Power cohort included 254 community-dwelling participants aged 18 years or more.
      Main outcome measures: Pearson’s correlations were used to compare gait speed assessed using a timed 4-m walk test at preferred pace, and daily-life gait speed obtained from tri-axial lower-back accelerometer data over seven consecutive days.
      Results: Participants (median age 66.7 years [IQR 59.4–72.5], 65.7% female) had a mean 4-m gait speed of 1.43 m/s (SD 0.21), and a mean 50th percentile of daily-life gait speed of 0.90 m/s (SD 0.23). Ninety-six percent had a bimodal distribution of daily-life gait speed, with a mean 1st peak of 0.61 m/s (SD 0.15) and 2nd peak of 1.26 m/s (SD 0.23). The percentile of the daily-life distribution that corresponded best with the individual 4-m gait speed had a median value of 91.2 (IQR 75.4–98.6). The 4-m gait speed was very weakly correlated to the 1st and 2nd peak (r = 0.005, p = 0.936 and r=0.181, p = 0.004), and the daily-life gait speed percentiles (range: 1st percentile r = 0.076, p = 0.230 to 99th percentile r = 0.399, p < 0.001; 50th percentile r = 0.132, p = 0.036).
      Conclusions: The 4-m gait speed is only weakly related to daily-life gait speed. Clinicians and researchers should consider that 4-m gait speed and daily-life gait speed represent two different constructs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abellan van Kan G.
        • Rolland Y.
        • Andrieu S.
        • Bauer J.
        • Beauchet O.
        • Bonnefoy M.
        • Cesari M.
        • Donini L.M.
        • Gillette Guyonnet S.
        • Inzitari M.
        • Nourhashemi F.
        • Onder G.
        • Ritz P.
        • Salva A.
        • Visser M.
        • Vellas B.
        Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force.
        J. Nutr. Health Aging. 2009; 13: 881-889https://doi.org/10.1007/s12603-009-0246-z
        • Studenski S.
        • Perera S.
        • Patel K.
        • Rosano C.
        • Faulkner K.
        • Inzitari M.
        • Brach J.
        • Chandler J.
        • Cawthon P.
        • Connor E.B.
        • Nevitt M.
        • Visser M.
        • Kritchevsky S.
        • Badinelli S.
        • Harris T.
        • Newman A.B.
        • Cauley J.
        • Ferrucci L.
        • Guralnik J.
        Gait speed and survival in older adults.
        JAMA. 2011; 305: 50-58https://doi.org/10.1001/jama.2010.1923
        • Fritz S.
        • Lusardi M.
        White paper: "walking speed: the sixth vital sign".
        J. Geriatr. Phys. 2009; 32: 46-49https://doi.org/10.1519/00139143-200932020-00002
        • Pasma J.H.
        • Stijntjes M.
        • Ou S.S.
        • Blauw G.J.
        • Meskers C.G.
        • Maier A.B.
        Walking speed in elderly outpatients depends on the assessment method.
        Age Dordr. (Dordr). 2014; 36: 9736https://doi.org/10.1007/s11357-014-9736-y
        • Berthelot J.M.
        • Le Goff B.
        • Maugars Y.
        The Hawthorne effect: stronger than the placebo effect?.
        Joint Bone Spine. 2011; 78: 335-336https://doi.org/10.1016/j.jbspin.2011.06.001
        • van Lummel R.C.
        • Walgaard S.
        • Pijnappels M.
        • Elders P.J.
        • Garcia-Aymerich J.
        • van Dieen J.H.
        • Beek P.J.
        Physical performance and physical activity in older adults: associated but separate domains of physical function in old age.
        PLoS One. 2015; 10e0144048https://doi.org/10.1371/journal.pone.0144048
        • Brodie M.A.
        • Coppens M.J.
        • Ejupi A.
        • Gschwind Y.J.
        • Annegarn J.
        • Schoene D.
        • Wieching R.
        • Lord S.R.
        • Delbaere K.
        Comparison between clinical gait and daily-life gait assessments of fall risk in older people.
        Geriatr. Gerontol. Int. 2017; 17: 2274-2282https://doi.org/10.1111/ggi.12979
        • Haskell W.L.
        • Blair S.N.
        • Hill J.O.
        Physical activity: health outcomes and importance for public health policy.
        Prev. Med. 2009; 49: 280-282https://doi.org/10.1016/j.ypmed.2009.05.002
        • Zijlstra W.
        • Hof A.L.
        Assessment of spatio-temporal gait parameters from trunk accelerations during human walking.
        Gait Posture. 2003; 18: 1-10https://doi.org/10.1016/S0966-6362(02)00190-X
        • van Schooten K.S.
        • Rispens S.M.
        • Elders P.J.
        • Lips P.
        • van Dieen J.H.
        • Pijnappels M.
        Assessing physical activity in older adults: required days of trunk accelerometer measurements for reliable estimation.
        J. Aging Phys. Act. 2015; 23: 9-17https://doi.org/10.1123/japa.2013-0103
        • Yang S.
        • Li Q.
        Inertial sensor-based methods in walking speed estimation: a systematic review.
        Sensors (Basel). 2012; 12: 6102-6116https://doi.org/10.3390/s120506102
        • Rojer A.G.M.
        • Reijnierse E.M.
        • Trappenburg M.C.
        • van Lummel R.C.
        • Niessen M.
        • van Schooten K.S.
        • Pijnappels M.
        • Meskers C.G.M.
        • Maier A.B.
        Instrumented assessment of physical activity is associated with muscle function but not with muscle mass in a general population.
        J. Aging Health. 2018; 30: 1462-1481https://doi.org/10.1177/0898264317721554
        • van Schooten K.S.
        • Pijnappels M.
        • Rispens S.M.
        • Elders P.J.
        • Lips P.
        • van Dieen J.H.
        Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults.
        J. Gerontol. A Biol. Sci. Med. Sci. 2015; 70: 608-615https://doi.org/10.1093/gerona/glu225
        • Brodie M.A.
        • Coppens M.J.
        • Lord S.R.
        • Lovell N.H.
        • Gschwind Y.J.
        • Redmond S.J.
        • Del Rosario M.B.
        • Wang K.
        • Sturnieks D.L.
        • Persiani M.
        • Delbaere K.
        Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different.
        Med. Biol. Eng. Comput. 2016; 54: 663-674https://doi.org/10.1007/s11517-015-1357-9
        • Tudor-Locke C.
        • Barreira T.V.
        • Brouillette R.M.
        • Foil H.C.
        • Keller J.N.
        Preliminary comparison of clinical and free-living measures of stepping cadence in older adults.
        J. Phys. Act. Health. 2013; 10: 1175-1180https://doi.org/10.1123/jpah.10.8.1175
        • Guralnik J.M.
        • Simonsick E.M.
        • Ferrucci L.
        • Glynn R.J.
        • Berkman L.F.
        • Blazer D.G.
        • Scherr P.A.
        • Wallace R.B.
        A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission.
        J. Gerontol. 1994; 49: M85-94https://doi.org/10.1093/geronj/49.2.M85
        • Storm F.A.
        • Heller B.W.
        • Mazza C.
        Step detection and activity recognition accuracy of seven physical activity monitors.
        PLoS One. 2015; 10e0118723https://doi.org/10.1371/journal.pone.0118723
        • Dijkstra B.
        • Kamsma Y.
        • Zijlstra W.
        Detection of gait and postures using a miniaturised triaxial accelerometer-based system: accuracy in community-dwelling older adults.
        Age Ageing. 2010; 39: 259-262https://doi.org/10.1093/ageing/afp249
        • Moe-Nilssen R.
        A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: the instrument.
        Clin. Biomech. (Bristol Avon). 1998; 13: 320-327https://doi.org/10.1016/S0268-0033(98)00089-8
        • Rispens S.M.
        • Pijnappels M.
        • van Schooten K.S.
        • Beek P.J.
        • Daffertshofer A.
        • van Dieen J.H.
        Consistency of gait characteristics as determined from acceleration data collected at different trunk locations.
        Gait Posture. 2014; 40: 187-192https://doi.org/10.1016/j.gaitpost.2014.03.182
        • Judge J.O.
        • Davis 3rd, R.B.
        • Ounpuu S.
        Step length reductions in advanced age: the role of ankle and hip kinetics.
        J. Gerontol. A Biol. Sci. Med. Sci. 1996; 51: M303-312https://doi.org/10.1093/gerona/51A.6.M303
        • Ashman K.M.
        • Bird C.M.
        • Zepf S.E.
        Detecting bimodality in astronomical datasets.
        Astronomical J. 1994; 108: 2348-2361https://doi.org/10.1086/117248
        • Rispens S.M.
        • Van Dieen J.H.
        • Van Schooten K.S.
        • Cofre Lizama L.E.
        • Daffertshofer A.
        • Beek P.J.
        • Pijnappels M.
        Fall-related gait characteristics on the treadmill and in daily life.
        J. Neuroeng. Rehabil. 2016; 13: 12https://doi.org/10.1186/s12984-016-0118-9
        • Mukaka M.
        Statistics corner: a guide to appropriate use of Correlation coefficient in medical research.
        Malawi Med. J. 2012; 24: 69-71
        • Nait Aicha A.
        • Englebienne G.
        • van Schooten K.S.
        • Pijnappels M.
        • Krose B.
        Deep learning to predict falls in older adults based on daily-life trunk accelerometry.
        Sensors (Basel). 2018; 18https://doi.org/10.3390/s18051654
        • Zalewski K.R.
        • Smith J.C.
        • Malzahn J.
        • VanHart M.
        • O’Connell D.
        Measures of physical ability are unrelated to objectively measured physical activity behavior in older adults residing in continuing care retirement communities.
        Arch. Phys. Med. Rehabil. 2009; 90: 982-986https://doi.org/10.1016/j.apmr.2008.12.013
        • Nicolai S.
        • Benzinger P.
        • Skelton D.A.
        • Aminian K.
        • Becker C.
        • Lindemann U.
        Day-to-day variability of physical activity of older adults living in the community.
        J. Aging Phys. Act. 2010; 18: 75-86https://doi.org/10.1123/japa.18.1.75
        • Morie M.
        • Reid K.F.
        • Miciek R.
        • Lajevardi N.
        • Choong K.
        • Krasnoff J.B.
        • Storer T.W.
        • Fielding R.A.
        • Bhasin S.
        • Lebrasseur N.K.
        Habitual physical activity levels are associated with performance in measures of physical function and mobility in older men.
        J. Am. Geriatr. Soc. 2010; 58: 1727-1733https://doi.org/10.1111/j.1532-5415.2010.03012.x
        • Pitta F.
        • Troosters T.
        • Spruit M.A.
        • Probst V.S.
        • Decramer M.
        • Gosselink R.
        Characteristics of physical activities in daily life in chronic obstructive pulmonary disease.
        Am. J. Respir. Crit. Care Med. 2005; 171: 972-977https://doi.org/10.1164/rccm.200407-855OC
        • Rantz M.
        • Skubic M.
        • Abbott C.
        • Galambos C.
        • Popescu M.
        • Keller J.
        • Stone E.
        • Back J.
        • Miller S.J.
        • Petroski G.F.
        Automated in-home fall risk assessment and detection sensor system for elders.
        Gerontologist. 2015; 55: S78-87https://doi.org/10.1093/geront/gnv044
        • Kaye J.
        • Mattek N.
        • Dodge H.
        • Buracchio T.
        • Austin D.
        • Hagler S.
        • Pavel M.
        • Hayes T.
        One walk a year to 1000 within a year: continuous in-home unobtrusive gait assessment of older adults.
        Gait Posture. 2012; 35: 197-202https://doi.org/10.1016/j.gaitpost.2011.09.006
        • Kerr J.
        • Marshall S.
        • Godbole S.
        • Neukam S.
        • Crist K.
        • Wasilenko K.
        • Golshan S.
        • Buchner D.
        The relationship between outdoor activity and health in older adults using GPS.
        Int. J. Environ. Res. Public Health. 2012; 9: 4615-4625https://doi.org/10.3390/ijerph9124615
        • Jacobs J.M.
        • Cohen A.
        • Hammerman-Rozenberg R.
        • Azoulay D.
        • Maaravi Y.
        • Stessman J.
        Going outdoors daily predicts long-term functional and health benefits among ambulatory older people.
        J. Aging Health. 2008; 20: 259-272https://doi.org/10.1177/0898264308315427
        • Rantz M.J.
        • Skubic M.
        • Koopman R.J.
        • Alexander G.L.
        • Phillips L.
        • Musterman K.
        • Back J.
        • Aud M.A.
        • Galambos C.
        • Guevara R.D.
        • Miller S.J.
        Automated technology to speed recognition of signs of illness in older adults.
        J. Gerontol. Nurs. 2012; 38: 18-23https://doi.org/10.3928/00989134-20120307-01
        • Perera S.
        • Mody S.H.
        • Woodman R.C.
        • Studenski S.A.
        Meaningful change and responsiveness in common physical performance measures in older adults.
        J. Am. Geriatr. Soc. 2006; 54: 743-749https://doi.org/10.1111/j.1532-5415.2006.00701.x