Advertisement

Anti-hypertensive peptides released from milk proteins by probiotics

      Highlights

      • Fermentation of milk proteins supports high production of bioactive peptides.
      • A functional milk drink with antihypertensive properties could be developed.
      • Antihypertensive peptides released from milk proteins normalize blood pressure in spontaneously hypertensive rats.
      • Consumption of bioactive peptides reduces hypertension in humans.

      Abstract

      The development of agricultural products as well as the industrialization of food production have led to dramatic lifestyle changes, particularly in dietary patterns, which in turn has increased the occurrence of chronic diseases and hypertension. In order to help overcome this, the food industry has developed functional milk products. Milk products, particularly fermented milk containing probiotics, are popular. Probiotics may promote gut health, reduce allergenicity, increase the bio-accessibility of fats/proteins in foods, and lower blood pressure because they contain poly-amines and bioactive peptides. Bioactive peptides have been shown to lower the risk of hypertension and cancer. Herein, we discuss the potential role of fermented milk as a functional drink acting against hypertension. However, longer-term research studies are necessary to evaluate the role of fermented milk drinks in supporting human health.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Campbell M.S.
        • Berrones A.J.
        • Krishnakumar I.M.
        • Charnigo R.J.
        • Westgate P.M.
        • Fleenor B.S.
        Responsiveness to curcumin intervention is associated with reduced aortic stiffness in young, obese men with higher initial stiffness.
        J. Funct. Foods. 2017; 29: 154-160
        • Park Y.W.
        Overview of Bioactive Components in Milk and Dairy Products. Bioactive Components in Milk and Dairy Products.
        2009: 3-5
        • Thomas J.
        Functional Foods Market Increases in Size.
        2014
        • Kitts D.D.
        • Weiler K.
        Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery.
        Curr. Pharm. Des. 2003; 9: 1309-1323
        • Fitzgerald R.J.
        • Meisel H.
        Milk protein hydrolysates and bioactive peptides.
        in: Fox P.F. McSweeney P.L.H. Advanced Dairy Chemistry—1 Proteins. Springer, US2003: 675-698
        • Michalatou M.
        • Androutsou M.E.
        • Antonopoulos M.
        • Vlahakos D.V.
        • Agelis G.
        • Zulli A.
        • et al.
        Transdermal delivery of AT1 receptor antagonists reduce blood pressure and reveals a vasodilatory effect in kidney blood vessels.
        Curr. Mol. Pharmacol. 2018;
        • Walstra P.
        • Walstra P.
        • Wouters J.T.
        • Geurts T.J.
        Dairy Science and Technology.
        CRC press, 2005
        • Huppertz T.
        • Fox P.F.
        • de Kruif K.G.
        • Kelly A.L.
        High pressure-induced changes in bovine milk proteins: a review.
        Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2006; 1764: 593-598
        • Fitzsimons S.M.
        • Mulvihill D.M.
        • Morris E.R.
        Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry.
        Food Hydrocolloids. 2007; 21: 638-644
        • Haug A.
        • Hostmark A.T.
        • Harstad O.M.
        Bovine milk in human nutrition—a review.
        Lipids Health Dis. 2007; 6: 25
        • Chaves-López C.
        • Serio A.
        • Paparella A.
        • Martuscelli M.
        • Corsetti A.
        • Tofalo R.
        • et al.
        Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk.
        Food Microbiol. 2014; 42: 117-121
        • López-Expósito I.
        • Amigo L.
        • Recio I.
        A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides.
        Dairy Sci. Technol. 2012; 92: 419-438
        • Saxelin M.
        • Korpela R.
        • Mäyrä-Mäkinen A.
        1 - introduction: classifying functional dairy products.
        in: Mattila-Sandholm T. Saarela M. Functional Dairy Products: Woodhead Publishing. 2003: 1-16
      1. World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases. WHO Library Cataloguing-in-Publication Data.
        WHO/FAO, Geneva, Switzerland2003
        • Amrane A.
        • Prigent Y.
        Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling.
        World J. Microbiol. Biotechnol. 1998; 14: 529-534
        • Ramesh C.
        • Chandan A.K.
        Manufacturing Yogurt and Fermented Milks Technology & Engineering.
        2013: 496
        • Ahtesh F.B.
        • Stojanovska L.
        • Apostolopoulos V.
        Processing and sensory characteristics of a fermented low‐fat skim milk drink containing bioactive antihypertensive peptides, a functional milk product.
        Int. J. Dairy Technol. 2017;
        • McNeil B.
        • Harvey L.M.
        Practical Fermentation Technology.
        Wiley Online Library, 2008
        • Panesar P.S.
        Fermented dairy products: starter cultures and potential nutritional benefits.
        Food Nutr. Sci. 2011; 2: 47-51
        • Shah N.P.
        Functional cultures and health benefits.
        Int. Dairy J. 2007; 17: 1262-1277
      2. Standard H. Australian Food Standards.

        • Ahtesh F.B.
        • Stojanovska L.
        • Shah N.P.
        • Mishra V.K.
        Effect of flavourzyme® on angiotensin-converting enzyme inhibitory peptides formed in skim milk and whey protein concentrate during fermentation by lactobacillus helveticus.
        J. Food Sci. 2015; (n/a-n/a)
        • Ahtesh F.B.
        • Apostolopoulos V.
        • Stojanovska L.
        • Shah N.P.
        • Mishra V.K.
        Effects of fermented skim milk drink by Kluyveromyces marxianus LAF 4 co‐cultured with lactic acid bacteria to release angiotensin‐converting enzyme inhibitory activities.
        Int. J. Dairy Technol. 2018; 71: 130-140
        • Ahtesh F.B.
        • Stojanovska L.
        • Mathai M.L.
        • Apostolopoulos V.
        • Mishra V.K.
        Proteolytic and angiotensin‐converting enzyme‐inhibitory activities of selected probiotic bacteria.
        Int. J. Food Sci. Technol. 2016;
        • Schanbacher F.L.
        • Talhouk R.S.
        • Murray F.A.
        • Gherman L.I.
        • Willett L.B.
        Milk-borne bioactive peptides.
        Int. Dairy J. 1998; 8: 393-403
        • Daliri E.B.
        • Lee B.H.
        • Oh D.H.
        Current trends and perspectives of bioactive peptides.
        Crit. Rev. Food Sci. Nutr. 2017; : 1-12
        • Daliri E.B.
        • Oh D.H.
        • Lee B.H.
        Bioactive peptides.
        Foods. 2017; 6
        • Huang Y.L.
        • Ma M.F.
        • Chow C.J.
        • Y.H T.
        Angiotensin I-converting enzyme inhibitory and hypocholesterolemic activities: effects of protein hydrolysates prepared from Achatina fulica snail foot muscle.
        Int. J. Food Prop. 2017; 20: 3102-3311
        • Zhang H.
        • Yokoyama W.H.
        • Zhang H.
        Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates.
        J. Sci. Food Agric. 2012; 92: 1395-1401
        • Eisele T.
        • Stressler T.
        • Kranz B.
        • Fischer L.
        Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase.
        Eur. Food Res. Technol. 2013; 236: 483-490
        • Kenny O.
        • FitzGerald R.J.
        • O’Cuinn G.
        • Beresford T.
        • Jordan K.
        Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus.
        Int. Dairy J. 2003; 13: 509-516
        • Broadbent J.R.
        • Cai H.
        • Larsen R.L.
        • Hughes J.E.
        • Welker D.L.
        • De Carvalho V.G.
        • et al.
        Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains.
        J. Dairy Sci. 2011; 94: 4313-4328
        • Lahtinen S.
        • Ouwehand A.C.
        • Salminen S.
        • von Wright A.
        Lactic Acid Bacteria: Microbiological and Functional Aspects.
        fourth edition. Taylor & Francis, 2011
        • Hornung B.
        • Martins Dos Santos V.A.P.
        • Smidt H.
        • Schaap P.J.
        Studying microbial functionality within the gut ecosystem by systems biology.
        Genes Nutr. 2018; 13: 5
        • Rea D.
        • Coppola G.
        • Palma G.
        • Barbieri A.
        • Luciano A.
        • Del Prete P.
        • et al.
        Microbiota effects on cancer: from risks to therapies.
        Oncotarget. 2018; 9: 17915-17927
        • Marinik E.L.
        • Frisard M.I.
        • Hulver M.W.
        • Davy B.M.
        • Rivero J.M.
        • Savla J.S.
        • et al.
        Angiotensin II receptor blockade and insulin sensitivity in overweight and obese adults with elevated blood pressure.
        Ther. Adv. Cardiovasc. Dis. 2013; 7: 11-20
        • Wu Y.
        • Zhang Q.
        • Ren Y.
        • Ruan Z.
        Effect of probiotic Lactobacillus on lipid profile: a systematic review and meta-analysis of randomized, controlled trials.
        PloS One. 2017; 12e0178868
        • West C.E.
        • Dzidic M.
        • Prescott S.L.
        • Jenmalm M.C.
        Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention.
        Allergol. Int. 2017; 66: 529-538
        • Asarat M.
        • Apostolopoulos V.
        • Vasiljevic T.
        • Donkor O.
        Short-chain fatty acids produced by synbiotic mixtures in skim milk differentially regulate proliferation and cytokine production in peripheral blood mononuclear cells.
        Int. J. Food Sci. Nutr. 2015; 66: 755-765
        • Asarat M.
        • Apostolopoulos V.
        • Vasiljevic T.
        • Donkor O.
        Short-chain fatty acids regulate Cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro.
        Immunol. Invest. 2016; 45: 205-222
        • Asarat M.
        • Vasiljevic T.
        • Apostolopoulos V.
        • Donkor O.
        Short-chain fatty acids regulate secretion of IL-8 from human intestinal epithelial cell lines in vitro.
        Immunol. Invest. 2015; 44: 678-693
        • Donkor O.N.
        • Ravikumar M.
        • Proudfoot O.
        • Day S.L.
        • Apostolopoulos V.
        • Paukovics G.
        • et al.
        Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure.
        Clin. Exp. Immunol. 2012; 167: 282-295
        • Tsigalou C.
        • Stavropoulou E.
        • Bezirtzoglou E.
        Current insights in microbiome shifts in sjogren’s syndrome and possible therapeutic interventions.
        Front. Immunol. 2018; 9: 1106
        • Caputi V.
        • Giron M.C.
        Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease.
        Int. J. Mol. Sci. 2018; 19
        • Camara-Lemarroy C.R.
        • Metz L.
        • Meddings J.B.
        • Sharkey K.A.
        • Wee Yong V.
        The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics.
        Brain. 2018;
        • Oak S.J.
        • Jha R.
        The effects of probiotics in lactose intolerance: a systematic review.
        Crit. Rev. Food Sci. Nutr. 2018; : 1-9
        • Pimentel G.
        • Burton K.J.
        • von Ah U.
        • Butikofer U.
        • Pralong F.P.
        • Vionnet N.
        • et al.
        Metabolic footprinting of fermented milk consumption in serum of healthy men.
        J. Nutr. 2018; 148: 851-860
        • Cha K.H.
        • Lee E.H.
        • Yoon H.S.
        • Lee J.H.
        • Kim J.Y.
        • Kang K.
        • et al.
        Effects of fermented milk treatment on microbial population and metabolomic outcomes in a three-stage semi-continuous culture system.
        Food Chem. 2018; 263: 216-224
        • Zhang J.
        • Zhao X.
        • Jiang Y.
        • Zhao W.
        • Guo T.
        • Cao Y.
        • et al.
        Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by lactobacillus plantarum YW11 isolated from Tibetan kefir.
        J. Dairy Sci. 2017; 100: 6025-6041
        • Levkovich T.
        • Poutahidis T.
        • Smillie C.
        • Varian B.J.
        • Ibrahim Y.M.
        • Lakritz J.R.
        • et al.
        Probiotic bacteria induce a’ glow of health’.
        PloS One. 2013; 8: e53867
        • Bosevski M.
        • Bosevska G.
        • Stojanovska L.
        • Apostolopoulos V.
        CRP and fibrinogen imply clinical outcome of patients with type-2 diabetes and coronary artery disease.
        Acta biochimica et biophysica Sinica. 2017; 49: 284-285
        • Bosevski M.
        • Stojanovska L.
        • Apostolopoulos V.
        Inflammatory biomarkers: impact for diabetes and diabetic vascular disease.
        Acta biochimica et biophysica Sinica. 2015; 47: 1029-1031
        • Taylor D.A.
        Hypertensive crisis: a review of pathophysiology and treatment.
        Crit. Care Nurs. Clin. North Am. 2015; 27: 439-447
        • Bazyluk A.
        • Malyszko J.
        • Zbroch E.
        Cardiovascular risk in chronic kidney disease - what is new in the pathogenesis and treatment?.
        Postgrad. Med. 2018;
        • Mavromoustakos T.
        • Apostolopoulos V.
        • Matsoukas J.
        Antihypertensive drugs that act on renin-angiotensin system with emphasis in AT(1) antagonists.
        Mini Rev. Med. Chem. 2001; 1: 207-217
        • Qaradakhi T.
        • Apostolopoulos V.
        • Zulli A.
        Angiotensin (1–7) and alamandine: similarities and differences.
        Pharmacol. Res. 2016; 111: 820-826
        • Lemarié C.A.
        • Schiffrin E.L.
        The angiotensin II type 2 receptor in cardiovascular disease.
        J. Renin-Angiotensin-Aldosterone Syst. 2010; 11: 19-31
        • Pripp A.H.
        • Ardö Y.
        Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides.
        Food Chem. 2007; 102: 880-888
        • Pripp A.H.
        • Isaksson T.
        • Stepaniak L.
        • Sørhaug T.
        Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins.
        Eur. Food Res. Technol. 2004; 219: 579-583
        • Qaradakhi T.
        • Matsoukas M.T.
        • Hayes A.
        • Rybalka E.
        • Caprnda M.
        • Rimarova K.
        • et al.
        Alamandine reverses hyperhomocysteinemia-induced vascular dysfunction via PKA-dependent mechanisms.
        Cardiovasc. Ther. 2017; 35
        • Crawford P.
        • Dy D.
        • Carney M.
        Clinical inquiries. Which combination drug therapies are most effective for hypertension?.
        J. Family Pract. 2011; 60: 684-686
        • Ahn J.
        • Park S.
        • Atwal A.
        • Gibbs B.
        • Lee B.
        Angiotensin I-converting enzyme (ACE) inhibitory peptides from whey fermented by Lactobacillus species.
        J. Food Biochem. 2009; 33: 587-602
        • Chatterton D.E.W.
        • Smithers G.
        • Roupas P.
        • Brodkorb A.
        Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing.
        Int. Dairy J. 2006; 16: 1229-1240
        • Lehtinen R.
        • Jauhiainen T.
        • Kankuri E.
        • Lindstedt K.
        • Kovanen P.T.
        • Kerojoki O.
        • et al.
        Effects of milk casein-derived tripeptides Ile-pro-pro, val-pro-pro, and leu-pro-pro on enzymes processing vasoactive precursors in vitro.
        Arzneimittelforschung. 2010; 60: 182-185
        • Nagpal R.
        • Behare P.
        • Rana R.
        • Kumar A.
        • Kumar M.
        • Arora S.
        • et al.
        Bioactive peptides derived from milk proteins and their health beneficial potentials: an update.
        Food Funct. 2011; 2: 18-27
        • Elkhtab E.
        • El-Alfy M.
        • Shenana M.
        • Mohamed A.
        • Yousef A.E.
        New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and Kombucha cultures.
        J. Dairy Sci. 2017; 100: 9508-9520
        • Yamamoto N.
        • Takano T.
        Antihypertensive peptides derived from milk proteins.
        Die Nahrung. 1999; 43: 159-164
        • Maruyama S.
        • Nakagomi K.
        • Tomizuka N.
        • Suzuki H.
        Angiotensin I-converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. II. Isolation and bradykinin-potentiating activity on the uterus and the ileum of rats.
        Agric. Biol. Chem. 1985; 49: 1405-1409
        • Fitzgerald C.
        • Aluko R.E.
        • Hossain M.
        • Rai D.K.
        • Hayes M.
        Potential of a renin inhibitory peptide from the red seaweed palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats.
        J. Agric. Food Chem. 2014; 62: 8352-8356
        • Yu Z.
        • Yin Y.
        • Zhao W.
        • Chen F.
        • Liu J.
        Antihypertensive effect of angiotensin-converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin-angiotensin system.
        J Agric. Food Chem. 2014; 62: 912-917
        • Fekete A.A.
        • Givens D.I.
        • Lovegrove J.A.
        Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials.
        Nutrients. 2015; 7: 659-681
        • Nakamura Y.
        • Yamamoto N.
        • Sakai K.
        • Okubo A.
        • Yamazaki S.
        • Takano T.
        Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk.
        J. Dairy Sci. 1995; 78: 777-783
        • Nakamura Y.
        • Yamamoto N.
        • Sakai K.
        • Takano T.
        Antihypertensive effect of sour milk and peptides isolated from It that are inhibitors to angiotensin I-converting enzyme.
        J. Dairy Sci. 1995; 78: 1253-1257
        • Jauhiainen T.
        • Rönnback M.
        • Vapaatalo H.
        • Wuolle K.
        • Kautiainen H.
        • Groop P.H.
        • et al.
        Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects.
        Eur. J. Clin. Nutr. 2010; 64: 424-431
        • Jauhiainen T.
        • Vapaatalo H.
        • Poussa T.
        • Kyronpalo S.
        • Rasmussen M.
        • Korpela R.
        Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement.
        Am. J. Hypertens. 2005; 18: 1600-1605
        • Seppo L.
        • Jauhiainen T.
        • Poussa T.
        • Korpela R.
        A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects.
        Am. J. Clin. Nutr. 2003; 77: 326-330
        • Turpeinen A.M.
        • Ikonen M.
        • Kivimaki A.S.
        • Kautiainen H.
        • Vapaatalo H.
        • Korpela R.
        A spread containing bioactive milk peptides Ile-pro-pro and val-pro-pro, and plant sterols has antihypertensive and cholesterol-lowering effects.
        Food Funct. 2012; 3: 621-627
        • Lawless H.T.
        • Heymann H.
        Sensory Evaluation of Food: Principles and Practices. Food Science Text Series.
        Springer, 2010
        • Schiano A.N.
        • Harwood W.S.
        • Drake M.A.
        A 100-year review: sensory analysis of milk.
        J. Dairy Sci. 2017; 100: 9966-9986