Advertisement

Plastic contamination of the food chain: A threat to human health?

      Highlights

      • A narrative review is presented of the potential toxicity of plastic particles to humans.
      • Nanoparticles are more readily absorbed than microparticles.
      • Atmospheric pollution and ingestion of shellfish are major sources of plastic particles.
      • Toxicity is unlikely unless absorption of plastic particles is high and continuous.

      Abstract

      Macro-plastic pollution is found in terrestrial and marine environments and is degraded to micro-particles (MP) and nano-particles (NP) of plastic. These can enter the human food chain either by inhalation or by ingestion, particularly of shellfish and crustaceans. Absorption across the gastrointestinal tract is relatively low, especially for MPs, which appear to have little toxicity. However, NPs are more readily absorbed and may accumulate in the brain, liver and other tissues in aquatic species and other animals. Studies using nanoparticles of other materials suggest that toxicity could potentially affect the central nervous system and the reproductive system, although this would be unlikely unless exposure levels were very high and absorption was increased by physiological factors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Geyer R.
        • Jambeck J.R.
        • Law K.L.
        Production, use, and fate of all plastics ever made.
        Science Advances. 2017; 1700782https://doi.org/10.1126/sciadv.1700782
        • Lebreton L.
        • Slat B.
        • Ferrari F.
        • Sainte-Rose B.
        • Aitken J.
        • Marthouse R.
        • Hajbane S.
        • Cunsolo S.
        • Schwartz A.
        • Levivier A.
        • Noble K.
        • Debeljak P.
        • Maral H.
        • Schoeneich-Argent R.
        • Brambini R.
        • Reisser J.
        Evidence that the Great Pacific garbage patch is rapidly accumulating plastic.
        Sci. Rep. 2018; 8: 4666https://doi.org/10.1038/s41598-018-22939-w
        • Bouwmeeste H.
        • Hollman P.C.H.
        • Peters R.J.B.
        Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology.
        Environ. Sci. Technol. 2015; 49: 8932-8947
        • Masser A.
        • Turner A.
        Cadmium, lead and bromine in beached microplastics.
        EnvironmentalPollution. 2017; 227: 139-145
        • Scott G.
        Polymers and the environment.
        Royal Soc. Chem. Lond. 1999; : 1-132
        • Alimi O.S.
        • Farner Budarz J.
        • Hernandez L.M.
        • Tufenkji N.
        Microplastics and nanoplastics in aquatic environments: aggregation, deposition and enhanced contaminant transport.
        Environ. Sci. Technol. 2018; 52: 1704-1724
        • De Falco F.
        • Gullo M.P.
        • Gentile G.
        • Di Pace E.
        • Cocca M.
        • Gelabert L.
        • Brouta-Agnesa M.
        • Rovira A.
        • Escudero R.
        • Villalba R.
        • Mossotti R.
        • Montarsolo A.
        • Gavignano S.
        • Tonin C.
        • Avella M.
        Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.
        Environ. Pollut. 2018; 236: 916-925
        • Munari C.
        • Infantini V.
        • Scopini M.
        • Rastelli E.
        • Corinaldesi C.
        • Mistri M.
        Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica).
        Mar. Pollut. Bull. 2017; 122: 161-165
        • Ling S.D.
        • Sinclair M.
        • Levi C.J.
        • Reeves S.E.
        • Edgar G.J.
        Ubiquity of microplastics in coastal sea floor sediments.
        Mar. Pollut. Bull. 2017; 121: 104-110
        • Hermsen E.
        • Pompe R.
        • Besseling E.
        • Koelmans A.A.
        Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria.
        Mar. Pollut. Bull. 2017; 122: 253-258
        • Liboiron M.
        • Liboiron F.
        • Wells E.
        • Richard N.
        • Zahara A.
        • Mather C.
        • Bradshaw H.
        • Murichi J.
        Low plastic ingestion rate in Atlantic cod (Gadus morhua) from Newfound land destined for human consumption collected through citizen science methods.
        Mar. Pollut. Bull. 2016; 113: 428-437
        • Pazos R.S.
        • Maiztegui T.
        • Colautt D.C.
        • Paracampo A.H.
        • Gomez N.
        Microplastics in gut contents of coastal freshwater fish from Rio de la Plata estuary.
        Mar. Pollut. Bull. 2017; 12: 85-90
        • McGoran A.R.
        • Clark P.F.
        • Morritt D.
        Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames.
        Environ. Pollut. 2017; 220: 744-751
        • Ward J.E.
        • Kach D.J.
        Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves.
        Mar. Environ. Res. 2009; 68: 137-142
        • Wegner A.
        • Besseling E.
        • Foekema E.M.
        • Kamermans P.
        • Koelmans A.A.
        Effects of nanopolystyrene on the feeding behaviour of the blue mussel (Mytilus edulis L.).
        Environ. Toxicol. Chem. 2012; 31: 2490-2497
        • Bhattacharya P.
        • Lin S.J.
        • Turner J.P.
        • Ke P.C.
        Physical adsorption of charged plastic nanoparticles affects algal photosynthesis.
        J. Phys. Chem. 2010; 114: 16556-16561
        • Cedervall T.
        • Hansson L.A.
        • Lard M.
        • Frohm B.
        • Linse S.
        Food chain transport of nanoparticles affects behaviour and fat metabolism in fish.
        PLoS One. 2012; 7e32254
        • Van Cauwenberghe L.
        • Janssen C.R.
        Microplastics in bivalves cultured for human consumption.
        Environ. Pollut. 2014; 193: 65-70
        • Vandermeersch G.
        • Lourenco H.M.
        • Alvarez-Munoz D.
        • Cunha S.
        • Diogene J.
        • Cano-Sancho G.
        • Sloth J.J.
        • Kwaijk C.
        • Barcelo D.
        • Allegaert W.
        • Bekaertke K.
        • Fernandes J.O.
        • Magues A.
        • Robsens J.
        Environmental contaminants of emerging concern in seafood -European database on contaminant levels.
        Environ. Res. 2015; 143: 29-45
        • Andrady A.L.
        The plastics in microplastics: a review.
        Mar. Pollut. Bull. 2017; 119: 12-22
        • Keswani A.
        • Oliver D.M.
        • Gutierrez T.
        • Quilliam R.S.
        Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments.
        Mar. Environ. Res. 2016; 118: 10-19
        • Dris R.
        • Gasperi J.
        • Rocher V.
        • Saad M.
        • Renault N.
        • Tassin B.
        Microplastic contamination in an urban area: a case study in Greater Paris.
        Environ. Chem. 2015; 12: 592-599
        • Prata J.C.
        Airborne microplastics: consequences to human health?.
        Environ. Pollut. 2018; 234: 115-126
        • Dris R.
        • Gasperi J.
        • Mirande C.
        • Mandin C.
        • Guerrouache M.
        • Langlois V.
        • Tassin B.
        A first overview of textile fibres including microplastics in indoor and outdoor environments.
        Environ. Pollut. 2017; 221: 453-458
        • Liebezeit G.
        • Liebezeit E.
        Synthetic particles as contaminants in German beers.
        Food Addit. Contam. Part. A, Chem. Anal. Control Exposure Risk Assess. 2014; 31: 1574-1578
      1. R. Visagan, R. Grossman, P.A. Dimitriadis, A. Desai, ‘Crohn’z meanz Heinz’: Foreign body inflammatory mass mimicking Crohn’s disease, BMJ Case Rep (2013) 6th June Doi: 10.1136/bcr-2013-009603.

        • Guirgis M.
        • Nguyen R.
        • Pokorny C.
        Accidental ingestion of plastic from takeaway containers- food for thought.
        Med. J. Aust. 2011; 194: 245-246
        • Newell K.J.
        • Taylor B.
        • Walton J.C.
        • Tweedie E.J.
        Plastic bread-bag clips in the gastrointestinal tract: report of 5 cases and review of the literature.
        Can. Med. Assoc. J. 2000; 162: 527-529
        • Oppenheimer B.S.
        • Oppenheimer E.T.
        • Danishefsky I.
        • Stout A.P.
        • Eirich F.R.
        Further studies on polymers as carcinogenic agents in animals.
        Cancer Res. 1955; 15: 333-340
        • Sherman K.T.
        • Lyons H.
        The biological fate of implanted rigid polyurethane foams.
        J Surg. Res. 1969; 9: 167-171
        • Wilkes R.A.
        • Aristilde L.
        Degradation and metabolism of synthetic plastics and associated products by Pseudomonoas sp.: capabilities and challenges.
        J. Appl. Microbiol. 2017; 123: 582-593
        • Auta H.S.
        • Emenike C.U.
        • Fauziah S.H.
        Screening of Bacillus strains isolated from mangrove ecosystems in Peninsula Malaysia for microplastic degradation.
        Environ. Pollut. 2017; 231: 1552-1559
        • Yang Y.
        • Yang J.
        • Wu W.M.
        • Zhao J.
        • Song Y.
        • Gao L.
        • Yang R.
        • Jiang L.
        Biodegradation and mineralisation of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms.
        Environ. Sci. Technol. 2015; 49: 12087-12093
        • Bergami E.
        • Bocci E.
        • Vannucini M.L.
        • Monopoli M.
        • Salvati A.
        • Dawson K.A.
        • Corsi I.
        Nano-sized polystyrene affects feeding behaviour and physiology of brine shrimp Artemia franciscana larvae.
        Ecotox Environ. Saf. 2016; 123: 18-25
        • Ribeira F.
        • Garcia A.R.
        • Pereira B.P.
        • Fonseca M.
        • Mestre N.C.
        • Fonseca T.G.
        • Ilharco L.M.
        • Bebianno M.J.
        Microplastics effects on Scrobicularia plano.
        Mar. Pollut. Bull. 2017; 122: 379-391
        • Gray A.D.
        • Weinstein J.E.
        Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio).
        Environmental Toxicology & Chemistry. 2017; 36: 3074-3080
        • Della Torre C.
        • Bergami E.
        • Salvati A.
        • Faleri C.
        • Cirino P.
        • Dawson K.A.
        • Corsi I.
        Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.
        Environ. Sci. Technol. 2014; 48: 12302-12311
        • Schirinzi G.F.
        • Perez-Pomeda I.
        • Sanchis J.
        • Rossini C.
        • Farre M.
        • Barcelo D.
        Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells.
        Environ. Res. 2017; 159: 579-587
        • Wright S.L.
        • Kelly F.J.
        Plastic and human health: a micro issue?.
        Environ. Sci. Technol. 2017; 51: 6634-6647
        • Revel M.
        • Châtel A.
        • Mouneyrac C.
        Micro(nano)plastics: a threat to human health?.
        Curr. Opin. Environ. Sci. Health. 2018; 1: 17-23
        • Mahler G.J.
        • Esch M.B.
        • Tako E.
        • Southard T.L.
        • Archer S.D.
        • Glahn R.P.
        • Shular M.L.
        Oral exposure to polystyrene nanoparticles affects iron absorption.
        Nat. Nanotechnol. 2012; 7: 264-271
        • Kulkarnhi S.A.
        • Feng S.S.
        Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery.
        Pharm. Res. 2013; 10: 2512-2522
        • Nance E.
        Brain-penetrating nanoparticles for analysis of the brain microenvironment.
        Methods Mol. Biol. 2017; 1570: 91-104
        • Mattsson K.
        • Johnson E.U.
        • Malmendal A.
        • Linse S.
        • Hansson L.A.
        • Cedervall T.
        Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.
        Sci. Rep. 2017; 7: 11452
        • Chae Y.
        • An Y.J.
        Effects of micro- and nanoplastics in aquatic ecosystems: current research trends and perspectives.
        Mar. Pollut. Bull. 2017; 124: 624-632
        • Zhang L.
        • Xie X.
        • Zhou Y.
        • Yu D.
        • Deng Y.
        • Ouyang J.
        • Yang B.
        • Luo D.
        • Zhang D.D.
        • Kuang H.
        Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice.
        Int. J. Nanomed. 2018; 13: 777-789
        • Zhang Y.
        • Wu J.
        • eng X.F.
        • Wang R.
        • Chen A.
        • Shao L.
        Current understanding of the toxicological risk posed to the fetus following maternal exposure to nanoparticles.
        Exp. Opin. Drug. Metab. Toxicol. 2017; 13: 1251-1263