Advertisement
Review article| Volume 92, P49-55, October 2016

Fracture healing in the elderly: A review

      Highlights

      • A number of factors can influence the incidence of delayed union or non-union after fracture.
      • Increased age appears to be a risk factor for delayed union or non-union.
      • The use of non-steroidal anti-inflammatory drugs and smoking put the patient at greatest risk of these complications.
      • Therapies such as ultrasound can minimize the risk of delayed union or non-union.

      Abstract

      Older patients are commonly at a higher risk of experiencing a bone fracture. Complications during fracture healing, including delayed union and non-union, can arise as a result of a multitude of patient and treatment factors.
      This review describes those factors which contribute to a greater risk of delayed union and non-union with particular reference to the elderly population and discusses therapies that may enhance the fracture healing process in the hope of reducing the incidence of delayed union and non-union.
      Increasing age does seem to increase the risk of delayed union or non-union. In addition, smoking and the treatment of post-fracture pain with non-steroidal anti-inflammatory drugs (NSAIDs) put the patient at the greatest risk, while ultrasound therapy appears to be a non-invasive, effective treatment option to reduce the risk of delayed union or non-union. The use of growth factors and of stem cells and the role of surgery are also discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jones G.
        • Nguyen T.
        • Kelly P.J.
        • Gilbert C.
        • Eisman J.A.
        Symptomatic fracture incidence in elderly men and women: the dubbo osteoporosis epidemiology study.
        Osteoporos. Int. 1994; 4: 277-282
        • McKibbin B.
        The biology of fracture healing in long bones.
        J. Bone Jt. Surg. [Br]. 1978; 60: 150-162
        • Marsell R.
        • Einhorn T.A.
        The biology of fracture healing.
        Injury. 2011; 42: 551-555
        • Frost H.M.
        The biology of fracture healing: an overview for clinicians. Part I.
        Clin. Orthop. Relat. Res. 1989; 248: 283-293
        • Tzioupis C.
        • Giannoudis P.V.
        Prevalence of long-bone non-unions.
        Injury. 2007; 38: S3-9
        • Phieffer L.S.
        • Goulet J.A.
        Delayed unions of the tibia.
        J. Bone Jt. Surg. Am. 2006; 88: 205-216
        • Antonova E.
        • Le T.K.
        • Burge R.
        • Mershon J.
        Tibia shaft fractures: costly burden of nonunions.
        BMC Musculoskelet. Disord. 2013; 14: 1
        • Patil S.
        • Montgomery R.
        Management of complex tibial and femoral nonunion using the Ilizarov technique, and its cost implications.
        Bone Jt. J. 2006; 88: 928-932
        • Gruber R.
        • Koch H.
        • Doll B.A.
        • Tegtmeier F.
        • Einhorn T.A.
        • Hollinger J.O.
        Fracture healing in the elderly patient.
        Exp. Gerontol. 2006; 41: 1080-1093
        • Egol K.A.
        • Koval K.J.
        • Zuckerman J.D.
        Functional recovery following hip fracture in the elderly.
        J. Orthop. Trauma. 1997; 11: 594-599
        • Lu C.
        • Miclau T.
        • Hu D.
        • Hansen E.
        • Tsui K.
        • Puttlitz C.
        • Marcucio R.S.
        Cellular basis for age‐related changes in fracture repair.
        J. Orthop. Res. 2005; 23: 1300-1307
        • Nikolaou V.S.
        • Efstathopoulos N.
        • Kontakis G.
        • Kanakaris N.K.
        • Giannoudis P.V.
        The influence of osteoporosis in femoral fracture healing time.
        Injury. 2009; 40: 663-668
        • Claes L.
        • Grass R.
        • Schmickal T.
        • Kisse B.
        • Eggers C.
        • Gerngross H.
        • Mutschler W.
        • Arand M.
        • Wintermeyer T.
        • Wentzensen A.
        Monitoring and healing analysis of 100 tibial shaft fractures.
        Langenbeck's Arch. Surg. 2002; 387: 146-152
        • Robinson C.M.
        • McQueen M.M.
        • Wakefield A.E.
        Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture.
        J. Bone Jt. Surg. Am. 2004; 86: 1359-1365
        • Parker M.J.
        • Raghavan R.
        • Gurusamy K.
        Incidence of fracture-healing complications after femoral neck fractures.
        Clin. Orthop. Relat. Res. 2007; 458: 175-179
        • Hee H.T.
        • Wong H.P.
        • Low Y.P.
        • Myers L.
        Predictors of outcome of floating knee injuries in adults: 89 patients followed for 2–12 years.
        Acta Orthop. Scand. 2001; 72: 385-394
        • Ekeland A.
        • Engesæter L.B.
        • Langeland N.
        Influence of age on mechanical properties of healing fractures and intact bones in rats.
        Acta Orthop. Scand. 1982; 53: 527-534
        • Bak B.
        • Andreassen T.T.
        The effect of aging on fracture healing in the rat.
        Calcif. Tissue Int. 1989; 45: 292-297
        • Strube P.
        • Sentuerk U.
        • Riha T.
        • Kaspar K.
        • Mueller M.
        • Kasper G.
        • Matziolis G.
        • Duda G.N.
        • Perka C.
        Influence of age and mechanical stability on bone defect healing: age reverses mechanical effects.
        Bone. 2008; 42: 758-764
        • Hernandez R.K.
        • Do T.P.
        • Critchlow C.W.
        • Dent R.E.
        • Jick S.S.
        Patient-related risk factors for fracture-healing complications in the United Kingdom general practice research database.
        Acta Orthop. 2012; 83: 653-660
        • Liu W.
        • Xiao J.
        • Ji F.
        • Xie Y.
        • Hao Y.
        Intrinsic and extrinsic risk factors for nonunion after nonoperative treatment of midshaft clavicle fractures.
        Orthop. Traumatol.: Surg. Res. 2015; 101: 197-200
        • Perlman M.H.
        • Thordarson D.B.
        Ankle fusion in a high risk population: an assessment of nonunion risk factors.
        Foot Ankle Int. 1999; 20: 491-496
        • W-Dahl A.
        • Toksvig-Larsen S.
        Cigarette smoking delays bone healing a prospective study of 200 patients operated on by the hemicallotasis technique.
        Acta Orthop. Scand. 2004; 75: 347-351
        • Donigan J.A.
        • Fredericks D.C.
        • Nepola J.V.
        • Smucker J.D.
        The effect of transdermal nicotine on fracture healing in a rabbit model.
        J. Orthop. Trauma. 2012; 26: 724-727
        • Skott M.
        • Andreassen T.T.
        • Ulrich-Vinther M.
        • Chen X.
        • Keyler D.E.
        • LeSage M.G.
        • Pentel P.R.
        • Bechtold J.E.
        • Soballe K.
        Tobacco extract but not nicotine impairs the mechanical strength of fracture healing in rats.
        J. Orthop. Res. 2006; 24: 1472-1479
        • Brown C.W.
        • Orme T.J.
        • Richardson H.D.
        The rate of pseudarthrosis (surgical nonunion) in patients who are smokers and patients who are nonsmokers: a comparison study.
        Spine. 1986; 11: 942-943
        • Schmitz M.A.
        • Finnegan M.
        • Natarajan R.
        • Champine J.
        Effect of smoking on tibial shaft fracture healing.
        Clin. Orthop. Relat. Res. 1999; 365: 184-200
        • Massari L.
        • Falez F.
        • Lorusso V.
        • Zanon G.
        • Ciolli L.
        • La Cava F.
        • Cadossi M.
        • Chiarello E.
        • De Terlizzi F.
        • Setti S.
        • Benazzo F.M.
        Can a combination of different risk factors be correlated with leg fracture healing time?.
        J. Orthop. Traumatol. 2013; 14: 51-57
        • Perlman M.H.
        • Thordarson D.B.
        Ankle fusion in a high risk population: an assessment of nonunion risk factors.
        Foot Ankle Int. 1999; 20: 491-496
        • Jeffcoach D.R.
        • Sams V.G.
        • Lawson C.M.
        • Enderson B.L.
        • Smith S.T.
        • Kline H.
        • Barlow P.B.
        • Wylie D.R.
        • Krumenacker L.A.
        • McMillen J.C.
        • Pyda J.
        Nonsteroidal anti-inflammatory drugs’ impact on nonunion and infection rates in long-bone fractures.
        J. Trauma Acute Care Surg. 2014; 76: 779-783
        • Adams C.I.
        • Keating J.F.
        • Court-Brown C.M.
        Cigarette smoking and open tibial fractures.
        Injury. 2001; 32: 61-65
        • Cook S.D.
        • Ryaby J.P.
        • McCabe J.
        • Frey J.J.
        • Heckman J.D.
        • Kristiansen T.K.
        Acceleration of tibia and distal radius fracture healing in patients who smoke.
        Clin. Orthop. Relat. Res. 1997; 337: 198-207
        • Kyrö A.
        • Usenius J.P.
        • Aarnio M.
        • Kunnamo I.
        • Avikainen V.
        Are smokers a risk group for delayed healing of tibial shaft fractures?.
        Ann. Chir. Gynaecol. 1992; 82: 254-262
        • Jiao H.
        • Xiao E.
        • Graves D.T.
        Diabetes and its effect on bone and fracture healing.
        Curr. Osteoporos. Rep. 2015; 13: 327-335
        • Glassman S.D.
        • Alegre G.
        • Carreon L.
        • Dimar J.R.
        • Johnson J.R.
        Perioperative complications of lumbar instrumentation and fusion in patients with diabetes mellitus.
        Spine J. 2003; 3: 496-501
        • Loder R.T.
        The influence of diabetes mellitus on the healing of closed fractures.
        Clin. Orthop. Relat. Res. 1988; 232: 210-216
        • Jones K.B.
        • Maiers-Yelden K.A.
        • Marsh J.L.
        • Zimmerman M.B.
        • Estin M.
        • Saltzman C.L.
        Ankle fractures in patients with diabetes mellitus.
        Bone Jt. J. 2005; 87: 489-495
        • Wukich D.K.
        • Joseph A.
        • Ryan M.
        • Ramirez C.
        • Irrgang J.J.
        Outcomes of ankle fractures in patients with uncomplicated versus complicated diabetes.
        Foot Ankle Int. 2011; 32: 120-130
        • Chaudhary S.B.
        • Liporace F.A.
        • Gandhi A.
        • Donley B.G.
        • Pinzur M.S.
        • Lin S.S.
        Complications of ankle fracture in patients with diabetes.
        J. Am. Acad. Orthop. Surg. 2008; 16: 159-170
        • Simon A.M.
        • Manigrasso M.B.
        • O'Connor J.P.
        Cyclo-oxygenase 2 function is essential for bone fracture healing.
        J. Bone Miner. Res. 2002; 17: 963-976
        • Pountos I.
        • Georgouli T.
        • Blokhuis T.J.
        • Pape H.C.
        • Giannoudis P.V.
        Pharmacological agents and impairment of fracture healing: what is the evidence?.
        Injury. 2008; 39: 384-394
        • Altman R.D.
        • Latta L.L.
        • Keer R.
        • Renfree K.
        • Hornicek F.J.
        • Banovac K.
        Effect of nonsteroidal antiinflammatory drugs on fracture healing: a laboratory study in rats.
        J. Orthop. Trauma. 1995; 9: 392-400
        • Gerstenfeld L.C.
        • Thiede M.
        • Seibert K.
        • Mielke C.
        • Phippard D.
        • Svagr B.
        • Cullinane D.
        • Einhorn T.A.
        Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs.
        J. Orthop. Res. 2003; 21: 670-675
        • Beck A.
        • Krischak G.
        • Sorg T.
        • Augat P.
        • Farker K.
        • Merkel U.
        • Kinzl L.
        • Claes L.
        Influence of diclofenac (group of nonsteroidal anti-inflammatory drugs) on fracture healing.
        Arch. Orthop. Trauma Surg. 2003; 123: 327-332
        • Goodman S.
        • Ma T.
        • Trindade M.
        • Ikenoue T.
        • Matsuura I.
        • Wong N.
        • Fox N.
        • Genovese M.
        • Regula D.
        • Smith R.L.
        COX-2 selective NSAID decreases bone ingrowth in vivo.
        J. Orthop. Res. 2002; 20: 1164-1169
        • Butcher C.K.
        • Marsh D.R.
        Nonsteroidal anti-inflammatory drugs delay tibial fracture union.
        Injury. 1996; 27: 375
        • Hernandez R.K.
        • Do T.P.
        • Critchlow C.W.
        • Dent R.E.
        • Jick S.S.
        Patient-related risk factors for fracture-healing complications in the United Kingdom general practice research database.
        Acta Orthop. 2012; 83: 653-660
        • Van Staa T.P.
        • Leufkens H.G.
        • Abenhaim L.
        • Zhang B.
        • Cooper C.
        Use of oral corticosteroids and risk of fractures.
        J. Bone Miner. Res. 2000; 15: 993-1000
        • Weinstein R.S.
        • Jilka R.L.
        • Parfitt A.M.
        • Manolagas S.C.
        Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.
        J. Clin. Investig. 1998; 102: 274
        • Blunt J.W.
        • Plotz C.M.
        • Lattes R.
        • Howes E.L.
        • Meyer K.
        • Ragan C.
        Effect of cortisone on experimental fractures in the rabbit.
        Exp. Biol. Med. 1950; 73: 678-681
        • Waters R.V.
        • Gamradt S.C.
        • Asnis P.
        • Vickery B.H.
        • Avnur Z.
        • Hill E.
        • Bostrom M.
        Systemic corticosteroids inhibit bone healing in a rabbit ulnar osteotomy model.
        Acta Orthop. Scand. 2000; 71: 316-321
        • Høgevold H.E.
        • Grøgaard B.
        • Reikerås O.
        Effects of short-term treatment with corticosteroids and indomethacin on bone healing: a mechanical study of osteotomies in rats.
        Acta Orthop. Scand. 1992; 63: 607-611
        • Key J.A.
        • Odell R.T.
        Failure of cortisone to delay or to prevent the healing of fractures in rats.
        J. Bone Joint Surg. Am. 1952; 34: 665-677
        • Aslan M.
        • Şimşek G.
        • Yildirim Ü.
        Effects of short-term treatment with systemic prednisone on bone healing: an experimental study in rats.
        Dent. Traumatol. 2005; 21: 222-225
        • Mashiba T.
        • Hirano T.
        • Turner C.H.
        • Forwood M.R.
        • Johnston C.C.
        • Burr D.B.
        Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib.
        J. Bone Miner. Res. 2000; 15: 613-620
        • Banffy M.B.
        • Vrahas M.S.
        • Ready J.E.
        • Abraham J.A.
        Nonoperative versus prophylactic treatment of bisphosphonate-associated femoral stress fractures.
        Clin. Orthop. Relat. Res. 2011; 469: 2028-2034
        • Lyles K.W.
        • Colón-Emeric C.S.
        • Magaziner J.S.
        • Adachi J.D.
        • Pieper C.F.
        • Mautalen C.
        • Hyldstrup L.
        • Recknor C.
        • Nordsletten L.
        • Moore K.A.
        • Lavecchia C.
        Zoledronic acid and clinical fractures and mortality after hip fracture.
        N. Engl. J. Med. 2007; 357: 1799-1809
        • Solomon D.H.
        • Hochberg M.C.
        • Mogun H.
        • Schneeweiss S.
        The relation between bisphosphonate use and non-union of fractures of the humerus in older adults.
        Osteoporos. Int. 2009; 20: 895-901
        • Molvik H.
        • Khan W.
        Bisphosphonates and their influence on fracture healing: a systematic review.
        Osteoporos. Int. 2015; 26: 1251-1260
        • Stinchfield F.E.
        • Sankaran B.
        • Samilson R.
        The effect of anticoagulant therapy on bone repair.
        J. Bone Joint Surg. Am. 1956; 38: 270-282
        • Say F.
        • İltar S.
        • Alemdaroğlu K.B.
        • Özel İ.
        • Aydoğan N.H.
        • Gönültaş M.
        The effect of various types low molecular weight heparins on fracture healing.
        Thromb. Res. 2013; 131: e114-9
        • Kapetanakis S.
        • Nastoulis E.
        • Demesticha T.
        • Demetriou T.
        The effect of Low molecular weight heparins on fracture healing.
        Open Orthop. J. 2015; 9: 226
        • Pilge H.
        • Fröbel J.
        • Prodinger P.M.
        • Mrotzek S.J.
        • Fischer J.C.
        • Zilkens C.
        • Bittersohl B.
        • Krauspe R.
        Enoxaparin and rivaroxaban have different effects on human mesenchymal stromal cells in the early stages of bone healing.
        Bone Jt. Res. 2016; 5: 95-100
        • Klüter T.
        • Weuster M.
        • Brüggemann S.
        • Menzdorf L.
        • Fitschen-Oestern S.
        • Steubesand N.
        • Acil Y.
        • Pufe T.
        • Varoga D.
        • Seekamp A.
        • Lippross S.
        Rivaroxaban does not impair fracture healing in a rat femur fracture model: an experimental study.
        BMC Musculoskelet Disord. 2015; 16: 1
        • Harrison A.
        • Lin S.
        • Pounder N.
        • Mikuni-Takagaki Y.
        Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair.
        Ultrason. 2016; 70: 45-52
        • Liu Y.
        • Wei X.
        • Kuang Y.
        • Zheng Y.
        • Gu X.
        • Zhan H.
        • Shi Y.
        Ultrasound treatment for accelerating fracture healing of the distal radius: a control study.
        Acta Cir. Bras. 2014; 29: 765-770
        • Rubin C.
        • Bolander M.
        • Ryaby J.P.
        • Hadjiargyrou M.
        The use of low-intensity ultrasound to accelerate the healing of fractures.
        J. Bone Jt. Surg. Am. 2001; 83: 259-
        • Ghodadra N.
        • Singh K.
        Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures.
        Biologics. 2008; 2: 345-354
        • Govender S.
        • Csimma C.
        • Genant H.K.
        • Valentin-Opran A.
        • Amit Y.
        • Arbel R.
        • Aro H.
        • Atar D.
        • Bishay M.
        • Börner M.G.
        • Chiron P.
        Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures.
        J. Bone Jt. Surg. 2002; 84: 2123-2134
        • Wei S.
        • Cai X.
        • Huang J.
        • Xu F.
        • Liu X.
        • Wang Q.
        Recombinant human BMP-2 for the treatment of open tibial fractures.
        Orthopedics. 2012; 35: e847-54
        • Alt V.
        • Donell S.T.
        • Chhabra A.
        • Bentley A.
        • Eicher A.
        • Schnettler R.
        A health economic analysis of the use of rhBMP-2 in Gustilo–Anderson grade III open tibial fractures for the UK, Germany and France.
        Injury. 2009; 40: 1269-1275
        • Pietrogrande L.
        • Raimondo E.
        Teriparatide in the treatment of non-unions: scientific and clinical evidences.
        Injury. 2013; 44: S54-7
        • Huang T.W.
        • Chuang P.Y.
        • Lin S.J.
        • Lee C.Y.
        • Huang K.C.
        • Shih H.N.
        • Lee M.S.
        • Hsu R.W.
        • Shen W.J.
        Teriparatide improves fracture healing and early functional recovery in treatment of osteoporotic intertrochanteric fractures.
        Medicine. 2016; 95: e3626
        • Tang B.M.
        • Eslick G.D.
        • Nowson C.
        • Smith C.
        • Bensoussan A.
        Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis.
        Lancet. 2007; 370: 657-666
        • Jackson R.D.
        • LaCroix A.Z.
        • Gass M.
        • Wallace R.B.
        • Robbins J.
        • Lewis C.E.
        • Bassford T.
        • Beresford S.A.
        • Black H.R.
        • Blanchette P.
        • Bonds D.E.
        Calcium plus vitamin D supplementation and the risk of fractures.
        N. Engl. J. Med. 2006; 354: 669-683
        • Doetsch A.M.
        • Faber J.
        • Lynnerup N.
        • Wätjen I.
        • Bliddal H.
        • Danneskiold-Samsøe B.
        The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: a randomized placebo-controlled study.
        Calcif. Tissue Int. 2004; 75: 183-188
        • Boszczyk A.M.
        • Zakrzewski P.
        • Pomianowski S.
        • Vitamin D.
        concentration in patients with normal and impaired bone union.
        Pol. Orthop. Traumatol. 2012; 78: 1-3
        • Bedi A.
        • Le T.T.
        • Karunakar M.A.
        Surgical treatment of nonarticular distal tibia fractures.
        J. Am. Acad. Orthop. Surg. 2006; 14: 406-416
        • Hernigou P.H.
        • Poignard A.
        • Beaujean F.
        • Rouard H.
        Percutaneous autologous bone-marrow grafting for nonunions.
        J. Bone Joint Surg. Am. 2005; 87: 1430-1437
        • Connolly J.F.
        • Guse R.
        • Tiedeman J.
        • Dehne R.
        Autologous marrow injection as a substitute for operative grafting of tibial nonunions.
        Clin. Orthop. Relat. Res. 1991; 266: 259-270
        • Gómez-Barrena E.
        • Rosset P.
        • Lozano D.
        • Stanovici J.
        • Ermthaller C.
        • Gerbhard F.
        Bone fracture healing: cell therapy in delayed unions and nonunions.
        Bone. 2015; 70: 93-101
        • Geiger F.
        • Bertram H.
        • Berger I.
        • Lorenz H.
        • Wall O.
        • Eckhardt C.
        • Simank H.G.
        • Richter W.
        Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects.
        J. Bone Miner. Res. 2005; 20: 2028-2035
        • Beamer B.
        • Hettrich C.
        • Lane J.
        Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing.
        HSS J. 2010; 6: 85-94
        • Kawaguchi H.
        • Nakamura K.
        • Tabata Y.
        • Ikada Y.
        • Aoyama I.
        • Anzai J.
        • Nakamura T.
        • Hiyama Y.
        • Tamura M.
        Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2.
        J. Clin. Endocrinol. Metab. 2001; 86: 875-880
        • Schmidmaier G.
        • Wildemann B.
        • Bail H.
        • Lucke M.
        • Fuchs T.
        • Stemberger A.
        • Flyvbjerg A.
        • Haas N.P.
        • Raschke M.
        Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-β1) from a biodegradable poly (d, l-lactide) coating of osteosynthetic implants accelerates fracture healing in rats.
        Bone. 2001; 28: 341-350