Advertisement
Review article| Volume 93, P73-77, November 2016

Cognition and gait in older people

  • Jason A. Cohen
    Affiliations
    Department of Neurology, Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, 1225 Morris Park Avenue, #306, Bronx, NY 10461, USA
    Search for articles by this author
  • Joe Verghese
    Affiliations
    Department of Neurology, Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, 1225 Morris Park Avenue, #306, Bronx, NY 10461, USA

    Department of Medicine, Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, 1225 Morris Park Avenue, #306, Bronx, NY 10461, USA
    Search for articles by this author
  • Jessica L. Zwerling
    Correspondence
    Corresponding author at: Division of Cognitive and Motor Aging, 1225 Morris Park Avenue, #306, Bronx, NY 10461, USA.
    Affiliations
    Department of Neurology, Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, 1225 Morris Park Avenue, #306, Bronx, NY 10461, USA
    Search for articles by this author

      Highlights

      • Cognition and gait decline with normal and pathological aging.
      • Cognition and gait have shared anatomic substrates and brain control processes.
      • Cognitive impairment can predict incident gait impairment.
      • Changes in gait can predict incident cognitive impairment.
      • Interventions may be able to mitigate gait and cognitive decline in aging.

      Abstract

      Cognitive difficulties and gait abnormalities both increase with age. We review normal and pathologic changes in both gait and cognition in older adults. Gait performance in older individuals is linked to specific cognitive changes, in particular in executive function. Structural and functional assays highlight the shared anatomic control of cognitive and gait function, mostly in the prefrontal cortices. Cognitive impairment can be used to predict incident gait difficulties. Changes in gait, especially decreased gait velocity, may be a harbinger of impending cognitive decline. The combination of slow gait and cognitive complaints (the Motoric Cognitive Risk syndrome) is a powerful new clinical tool to identify those at high risk of developing dementia and therefore may be used to target interventions. Evidence is limited, but cognitive training and targeted physical activity may be useful to mitigate or prevent gait and cognitive decline with age.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Population Division, United Nations, Department of Economic and Social Affairs, World Population Ageing 2013, United Nations. (2013) 114. Doi: ST/ESA/SER.A/348.

        • Prince M.
        • Wimo A.
        • Guerchet M.
        • Gemma-Claire A.
        • Wu Y.-T.
        • Prina M.
        World Alzheimer report 2015: the global impact of dementia—an analysis of prevalence, incidence, cost and trends.
        Alzheimers Dis. Int. 2015; 84https://doi.org/10.1111/j.0963-7214.2004.00293.x
        • Verghese J.
        • LeValley A.
        • Hall C.B.
        • Katz M.J.
        • Ambrose A.F.
        • Lipton R.B.
        Epidemiology of gait disorders in community-residing older adults.
        J. Am. Geriatr. Soc. 2006; 54: 255-261https://doi.org/10.1111/j.1532-5415.2005.00580.x
        • Cesari M.
        • Kritchevsky S.B.
        • Penninx B.W.H.J.
        • Nicklas B.J.
        • Simonsick E.M.
        • Newman A.B.
        • et al.
        Prognostic value of usual gait speed in well-functioning older people—results from the health, aging and body composition study.
        J. Am. Geriatr. Soc. 2005; 53: 1675-1680https://doi.org/10.1111/j.1532-5415.2005.53501.x
        • Wilson R.S.
        • Schneider J.A.
        • Beckett L.A.
        • Evans D.A.
        • Bennett D.A.
        Progression of gait disorder and rigidity and risk of death in older persons.
        Neurology. 2002; 58: 1815-1819https://doi.org/10.1212/WNL.58.12.1815
        • Clark B.C.
        • Manini T.M.
        Sarcopenia =/= dynapenia.
        J. Gerontol. A Biol. Sci. Med. Sci. 2008; 63A: 829-834
        • Ribeiro F.
        • Oliveira J.
        Aging effects on joint proprioception: the role of physical activity in proprioception preservation.
        Eur. Rev. Aging Phys. Act. 2007; 4: 71-76https://doi.org/10.1007/s11556-007-0026-x
        • Sudarsky L.
        Geriatrics: gait disorders in the elderly.
        N. Engl. J. Med. 1990; 322: 1441-1446
        • Oh-Park M.
        • Holtzer R.
        • Xue X.
        • Verghese J.
        Conventional and robust quantitative gait norms in community-dwelling older adults.
        J. Am. Geriatr. Soc. 2010; 58: 1512-1518https://doi.org/10.1111/j.1532-5415.2010.02962.x
        • Plassman B.L.
        • Langa K.M.
        • Fisher G.G.
        • Heeringa S.G.
        • Weir D.R.
        • Ofstedal M.B.
        • et al.
        Prevalence of cognitive impairment without dementia in the United States.
        Ann. Intern. Med. 2008; 148: 427-434https://doi.org/10.7326/0003-4819-148-6-200803180-00005
        • Mitchell A.J.
        • Shiri-Feshki M.
        Rate of progression of mild cognitive impairment to dementia − Meta-analysis of 41 robust inception cohort studies.
        Acta Psychiatr. Scand. 2009; 119: 252-265https://doi.org/10.1111/j.1600-0447.2008.01326.x
        • Campbell N.L.
        • Unverzagt F.
        • LaMantia M.A.
        • Khan B.A.
        • Boustani M.A.
        Risk factors for the progression of mild cognitive impairment to dementia.
        Clin. Geriatr. Med. 2013; 29: 873-893https://doi.org/10.1016/j.cger.2013.07.009
        • Glisky E.L.
        Changes in cognitive function in human aging.
        in: Riddle D.R. Brain Aging Model. Methods, Mech. CRC Press/Taylor & Francis, Boca Raton (FL)2007: Chapter 1
        • Martin K.L.
        • Blizzard L.
        • Wood A.G.
        • Srikanth V.
        • Thomson R.
        • Sanders L.M.
        • et al.
        Cognitive function, gait, and gait variability in older people: a population-based study.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013; 68: 726-732https://doi.org/10.1093/gerona/gls224
        • Callisaya M.L.
        • Blizzard C.L.
        • Wood A.G.
        • Thrift A.G.
        • Wardill T.
        • Srikanth V.K.
        Longitudinal relationships between cognitive decline and gait slowing: the tasmanian study of cognition and gait.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014; 70: 1226-1232https://doi.org/10.1093/gerona/glv066
        • Best J.R.
        • Davis J.C.
        • Liu-Ambrose T.
        Longitudinal analysis of physical performance, functional status, physical activity, and mood in relation to executive function in older adults who fall.
        J. Am. Geriatr. Soc. 2015; 63: 1112-1120https://doi.org/10.1111/jgs.13444
        • Nascimbeni A.
        • Minchillo M.
        • Salatino A.
        • Morabito U.
        • Ricci R.
        Gait attentional load at different walking speeds.
        Gait Posture. 2015; 41: 304-306https://doi.org/10.1016/j.gaitpost.2014.09.008
        • Holtzer R.
        • Wang C.
        • Lipton R.
        • Verghese J.
        The relationship of executive functions and episodic memory with gait speed decline in aging defined in the context of cognitive reserve.
        J. Am. Geriatr. Soc. 2012; 60: 2093-2098https://doi.org/10.1111/j.1532-5415.2012.04193.x
        • Verghese J.
        • Holtzer R.
        • Lipton R.B.
        • Wang C.
        Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults.
        J. Am. Geriatr. Soc. 2012; 60: 1901-1905https://doi.org/10.1111/j.1532-5415.2012.04145.x
        • Nadkarni N.K.
        • Levine B.
        • McIlroy W.E.
        • Black S.E.
        Impact of subcortical hyperintensities on dual-tasking in alzheimer’s disease and aging.
        Alzheimer Dis. Assoc. Disord. 2012; 26https://doi.org/10.1097/WAD.0b013e3182172c58
        • Bolandzadeh N.
        • Liu-Ambrose T.
        • Aizenstein H.
        • Harris T.
        • Launer L.
        • Yaffe K.
        • et al.
        Pathways linking regional hyperintensities in the brain and slower gait.
        Neuroimage. 2014; 99: 7-13https://doi.org/10.1016/j.neuroimage.2014.05.017
        • Smith E.E.
        • O’Donnell M.
        • Dagenais G.
        • Lear S.A.
        • Wielgosz A.
        • Sharma M.
        • et al.
        Early cerebral small vessel disease and brain volume, cognition, and gait.
        Ann. Neurol. 2015; 77: 251-261https://doi.org/10.1002/ana.24320
        • Nadkarni N.K.
        • Nunley K.A.
        • Aizenstein H.
        • Harris T.B.
        • Yaffe K.
        • Satterfield S.
        • et al.
        Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the health ABC study.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014; 69: 996-1003https://doi.org/10.1093/gerona/glt151
        • Ezzati A.
        • Katz M.J.
        • Lipton M.L.
        • Lipton R.B.
        • Verghese J.
        The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI.
        Neuroradiology. 2015; 57: 851-861https://doi.org/10.1007/s00234-015-1536-2
        • Holtzer R.
        • Mahoney J.R.
        • Izzetoglu M.
        • Wang C.
        • England S.
        • Verghese J.
        Online fronto-cortical control of simple and attention-demanding locomotion in humans.
        Neuroimage. 2015; 112: 152-159https://doi.org/10.1016/j.neuroimage.2015.03.002
        • Holtzer R.
        • Mahoney J.R.
        • Izzetoglu M.
        • Izzetoglu K.
        • Onaral B.
        • Verghese J.
        fNIRS study of walking and walking while talking in young and old individuals.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011; 66A: 879-887https://doi.org/10.1093/gerona/glr068
        • Wrightson J.G.
        • Twomey R.
        • Ross E.Z.
        • Smeeton N.J.
        The effect of transcranial direct current stimulation on task processing and prioritisation during dual-task gait.
        Exp. Brain Res. 2015; 233: 1575-1583https://doi.org/10.1007/s00221-015-4232-x
        • Zhou J.
        • Hao Y.
        • Wang Y.
        • Jor’dan A.
        • Pascual-Leone A.
        • Zhang J.
        • et al.
        Transcranial direct current stimulation (tDCS) reduces the cost of performing a cognitive task on gait and postural control.
        Eur. J. Neurosci. 2014; 39: 1343-1348https://doi.org/10.1111/ejn.12492
        • Blumen H.M.
        • Holtzer R.
        • Brown L.L.
        • Gazes Y.
        • Verghese J.
        Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly.
        Hum. Brain Mapp. 2014; 35: 4090-4104https://doi.org/10.1002/hbm.22461
        • de M. Borges S.
        • Radanovic M.
        • Forlenza O.V.
        Functional mobility in a divided attention task in older adults with cognitive impairment.
        J. Mot Behav. 2015; 47: 378-385https://doi.org/10.1080/00222895.2014.998331
        • Montero-Odasso M.
        • Oteng-Amoako A.
        • Speechley M.
        • Gopaul K.
        • Beauchet O.
        • Annweiler C.
        • et al.
        The motor signature of mild cognitive impairment: results from the gait and brain study.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014; 69: 1415-1421https://doi.org/10.1093/gerona/glu155
        • Tseng B.Y.
        • Cullum C.M.
        • Zhang R.
        Older adults with amnestic mild cognitive impairment exhibit exacerbated gait slowing under dual-task challenges.
        Curr. Alzheimer Res. 2014; 11: 494-500https://doi.org/10.2174/1567205011666140505110828
        • Verghese J.
        • Holtzer R.
        • Wang C.
        • Katz M.J.
        • Barzilai N.
        • Lipton R.B.
        Role of APOE genotype in gait decline and disability in aging.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013; 68: 1395-1401https://doi.org/10.1093/gerona/glt115
        • Ojagbemi A.
        • D’Este C.
        • Verdes E.
        • Chatterji S.
        • Gureje O.
        Gait speed and cognitive decline over 2 years in the Ibadan study of aging.
        Gait Posture. 2015; 41: 736-740https://doi.org/10.1016/j.gaitpost.2015.01.011
        • Mielke M.M.
        • Roberts R.O.
        • Savica R.
        • Cha R.
        • Drubach D.I.
        • Christianson T.
        • et al.
        Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the mayo clinic study of aging.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013; 68: 929-937https://doi.org/10.1093/gerona/gls256
        • Verghese J.
        • Lipton R.B.
        • Hall C.B.
        • Kuslansky G.
        • Katz M.J.
        • Buschke H.
        Abnormality of gait as a predictor of non-Alzheimer’s dementia.
        N. Engl. J. Med. 2002; 347: 1761-1768
        • Verghese J.
        • Derby C.
        • Katz M.J.
        • Lipton R.B.
        High risk neurological gait syndrome and vascular dementia.
        J. Neural Transm. 2007; 114: 1249-1252https://doi.org/10.1007/s00702-007-0762-0
        • Beauchet O.
        • Annweiler C.
        • Callisaya M.L.
        • De Cock A.-M.
        • Helbostad J.L.
        • Kressig R.W.
        • et al.
        Poor gait performance and prediction of dementia: results from a meta-analysis.
        J. Am. Med. Dir. Assoc. 2016; https://doi.org/10.1016/j.jamda.2015.12.092
        • Verghese J.
        • Wang C.
        • Lipton R.B.
        • Holtzer R.
        Motoric cognitive risk syndrome and the risk of dementia.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013; 68: 412-418https://doi.org/10.1093/gerona/gls191
        • Verghese J.
        • Annweiler C.
        • Ayers E.
        • Barzilai N.
        • Beauchet O.
        • Bennett D.A.
        • et al.
        Motoric cognitive risk syndrome: multicountry prevalence and dementia risk.
        Neurology. 2014; 83: 718-726https://doi.org/10.1212/WNL.0000000000000717
        • Verghese J.
        • Ayers E.
        • Barzilai N.
        • Bennett D.A.
        • Buchman A.S.
        • Holtzer R.
        • et al.
        Motoric cognitive risk syndrome: multicenter incidence study.
        Neurology. 2014; 83: 2278-2284https://doi.org/10.1212/WNL.0000000000001084
        • Ayers E.
        • Verghese J.
        Motoric cognitive risk syndrome and risk of mortality in older adults.
        Alzheimer’s Dement. 2015; : 1-9https://doi.org/10.1016/j.jalz.2015.08.167
        • Verghese J.
        • Richard Lipton B.
        • Katz M.J.
        • Hall C.B.
        • Derby C.A.
        • Kuslansky G.
        • et al.
        Leisure activities and the risk of dementia in the elderly.
        N. Engl. J. Med. 2003; 348: 2508-2516
        • Guiney H.
        • Machado L.
        Benefits of regular aerobic exercise for executive functioning in healthy populations.
        Psychon. Bull. Rev. 2013; 20: 73-86https://doi.org/10.3758/s13423-012-0345-4
        • Young J.
        • Angevaren M.
        • Rusted J.
        • Tabet N.
        Aerobic exercise to improve cognitive function in older people without known cognitive impairment (Review).
        Cohrane Database Syst. Rev. 2015; : 1-145https://doi.org/10.1002/14651858.CD005381.pub4
        • Forbes D.
        • Forbes S.C.
        • Blake C.M.
        • Thiessen E.J.
        • Forbes S.
        Exercise programs for people with dementia (Review).
        Cohrane Database Syst. Rev. 2015; https://doi.org/10.1002/14651858.cd006489.pub4
        www.cochranelibrary.com
        • Smith-Ray R.L.
        • Makowski-Woidan B.
        • Hughes S.L.
        A randomized trial to measure the impact of a community- based cognitive training intervention on balance and gait in cognitively intact black older adults.
        Health Educ. Behav. 2014; 41: 62S-69Shttps://doi.org/10.1177/1090198114537068
        • Verghese J.
        • Mahoney J.
        • Ambrose A.F.
        • Wang C.
        • Holtzer R.
        Effect of cognitive remediation on gait in sedentary seniors.
        J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010; 65A: 1338-1343https://doi.org/10.1093/gerona/glq127
        • Steinmetz J.P.
        • Federspiel C.
        The effects of cognitive training on gait speed and stride variability in old adults: findings from a pilot study.
        Aging Clin. Exp. Res. 2014; 26: 635-643https://doi.org/10.1007/s40520-014-0228-9
        • Smith-Ray R.L.
        • Hughes S.L.
        • Prohaska T.R.
        • Little D.M.
        • Jurivich D.A.
        • Hedeker D.
        Impact of cognitive training on balance and gait in older adults.
        J. Gerontol. B. Psychol. Sci. Soc. Sci. 2015; 70: 357-366https://doi.org/10.1093/geronb/gbt097