Research Article| Volume 89, P16-21, July 2016

Aging and bone health in Singaporean Chinese pre-menopausal and postmenopausal women


      • The paper showed that age, bodyweight, adiposity, and exercise were associated differently with BMD and prevalence of osteoporosis of the spine and femoral neck.
      • Both estrogen alone and estrogen/progestogen combination HRT are beneficial to bone health, and it appears that both types of HRT are able to improve the BMD to levels of women a decade younger.
      • The BMD of Singaporean Chinese women appears to be equivalent to Americans and better than in some Asian populations.



      The study evaluated relationships between menopausal statuses, hormone replacement therapy (HRT), body mass index (BMI), percent body fat (PBF), and exercise with osteoporosis and bone mineral density (BMD) in Singaporean women.

      Study design

      This is a cross-sectional study.

      Main outcome measures

      The spine BMD, and femoral neck BMD as well as the prevalence of osteoporosis are the main outcome measures studied.


      Age, BMI, PBF and exercise intensity were independently associated with spine and femoral neck BMD. Women with higher BMI and lower PBF had higher BMD and lower prevalence of osteoporosis. Postmenopausal women without HRT had lower BMD and higher prevalence of osteoporosis while those on HRT had similar BMD and prevalence of osteoporosis as premenopausal women.


      This study shows that BMI and PBF are powerful predictors of BMD. Osteoporosis is site-specific in the Singapore population, being higher in the femoral neck than in the lumbar spine. The bone status after menopause may not be worse than that dictated by age alone and both ERT and E/PRT could sustain the BMD to levels corresponding to those of women a decade younger. A strategy to improve bone health should include dieting and physical exercise program that focuses on selectively reducing fat mass and increasing lean mass.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Riggs B.L.
        • Khosla S.
        • Melton 3rd, L.J.
        A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men.
        J. Bone Miner. Res. 1998; 13: 763-773
        • Recker R.
        • Lappe J.
        • Davies K.M.
        • Heaney R.
        Characterization of perimenopausal bone loss: a prospective study.
        J. Bone Miner. Res. 2000; 15: 1965-1973
        • Orimo H.
        • Nakamura T.
        • Hosoi T.
        • Iki M.
        • Uenishi K.
        • Endo N.
        • Ohta H.
        • Shiraki M.
        • Sugimoto T.
        • Suzuki T.
        • Soen S.
        • Nishizawa Y.
        • Hagino H.
        • Fukunaga M.
        • Fujiwara S.
        Japanese 2011 guidelines for prevention and treatment of osteoporosis—executive summary.
        Arch. Osteoporos. 2012; 7: 3-20
        • Rizzoli R.
        • Bianchi M.L.
        • Garabedian M.
        • McKay H.A.
        • Moreno L.S.
        Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly.
        Bone. 2010; 46: 294-305
        • Pothiwala P.
        • Evan E.M.
        • Chapman-Novakoske K.M.
        Ethnic variation in risk for osteoporosis among women: a review of biological and behavioral factors.
        J. Women’s Health. 2006; 15: 709-719
        • National Institutes of Health
        Bone Health Information. Osteoporosis and related bone diseases From the Centers for Disease Control and Prevention. Prevalence of disabilities and associated health conditions among adults—United States 1999.
        JAMA. 2001; 285: 1571-1572
        • Bow C.H.
        • Cheung E.
        • Cheung C.L.
        • Xiao S.M.
        • Loong C.
        • Soong C.
        • Tan K.C.
        • Luckey M.M.
        • Cauley J.A.
        • Fujiwara S.
        • Kung A.W.
        Ethnic difference of clinical vertebral fracture risk.
        Osteoporos. Int. 2012; 23: 879-885
        • Suzuki T.
        Risk factors for osteoporosis in Asia.
        J. Bone Miner. Metab. 2001; 19: 133-141
        • Hannafon F.
        • Cadogan M.P.
        Recognition and treatment of postmenopausal osteoporosis.
        J. Gerontol. Nurs. 2014; 40: 10-14
        • Looker A.C.
        • Wahner H.W.
        • Dunn W.L.
        • Calvo M.S.
        • Harris T.B.
        • Heyse S.P.
        • Johnston Jr., C.C.
        • Lindsay R.
        Updated data on proximal femur bone mineral levels of US adults.
        Osteoporos. Int. 1998; 8: 468-489
        • Goh V.H.H.
        • Tong T.Y.Y.
        • Mok H.P.P.
        • Said B.
        Interactions among age adiposity, bodyweight, lifestyle factors and sex steroid hormones in healthy Singaporean Chinese men.
        Asian J. Androl. 2007; 9: 611-621
      1. US Department of Health and Human Services. Physical Activity Guidelines for American (PGA) (accessed 05.04.15).

        • Goh V.H.H.
        • Tain C.F.
        • Tong T.Y.Y.
        • Mok H.P.P.
        • Wong M.T.
        Are BMI and other anthropometric measures appropriate as indices for obesity? A study in an Asian population.
        J. Lipid Res. 2004; 45: 1892-1898
        • Barrera G.
        • Bunout D.
        • Gattas V.
        • de la Maza M.P.
        • Leiva L.
        • Hirsch S.
        A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects.
        Nutrition. 2004; 20: 769-771
        • Lloyd J.T.
        • Alley D.E.
        • Hawkes W.G.
        • Hochberg M.C.
        • Waldstein S.R.
        • Orwig D.L.
        Body mass index is positively associated with bone mineral density in US older adults.
        Arch. Osteoporos. 2014; 9 (accessed 25.10.15): 175
        • Lu H.
        • Fu X.
        • Ma X.
        • Wu Z.
        • He W.
        • Wang Z.
        • Allison D.B.
        • Heymsfield S.B.
        • Zhu S.
        Relationships of percent body fat and percent trunk fat with bone mineral density among Chinese black, and white subjects.
        Osteoporos. Int. 2011; 22: 3029-3035
        • Fu X.
        • Ma X.
        • Lu H.
        • He W.
        • Wang Z.
        • Zhu S.
        Associations of fat mass and fat distribution with bone mineral density in pre- and postmenopausal Chinese women.
        Osteoporos. Int. 2011; 22: 113-119
        • Conradie M.
        • Conradie M.M.
        • Kidd M.
        • Hough S.
        Bone density in black and white South African women: contribution of ethnicity, body weight and lifestyle.
        Arch. Osteoporos. 2014; 9: 193
        • Yang P.L.S.
        • Lu Y.
        • Khoo C.M.
        • Leow M.K.S.
        • Khoo E.Y.H.
        • Teo A.
        • Lee Y.S.
        • Das De S.
        • Chong Y.S.
        • Gluckman P.D.
        • Tai E.S.
        • Venkataraman K.
        • Ng C.M.A.
        Associations between ethnicity, body composition, and bone mineral density in a Southeast Asian population.
        J. Clin. Endocrinol. Metab. 2013; 98: 4516-4523
        • Wee J.
        • Sng B.Y.
        • Shen L.
        • Lim C.T.
        • Singh G.
        • Das De S.
        The relationship between body mass index and physical activity levels in relation to bone mineral density in pre-menopausal and postmenopausal women.
        Arch. Osteoporos. 2013; 8
        • Ye S.
        • Song A.
        • Yang M.
        • Ma X.
        • Fu X.
        • Zhu S.
        Duration of television viewing and bone mineral density in Chinese women.
        J. Bone Miner. Metab. 2014; 32: 324-330
        • Robling A.G.
        • Castillo A.B.
        • Tumer C.H.
        Biomechanical and molecular regulation of bone remodelling.
        Annu. Rev. Biomed. Eng. 2006; 8: 455-498
        • Cauley J.A.
        • Lui L.Y.
        • Ensrud K.E.
        • Zmuda J.M.
        • Stone K.L.
        • Hochbeg M.D.
        • Cunnings S.R.
        Bone mineral density and the risk of incident non-spinal fractures in black and white women.
        JAMA. 2005; 293: 2102-2108
        • Barrett-Connor E.
        • Siris E.S.
        • Wehren L.E.
        • Miller P.D.
        • Abbott T.A.
        • Berger M.L.
        • Santora A.C.
        • Sherwood L.M.
        Osteoporosis and fracture risk in women of different ethnic groups.
        J. Bone Miner. Res. 2005; 20: 185-194
        • Paggiosi M.A.
        • Glueer C.C.
        • Roux C.
        • Reid D.M.
        • Felsenberg D.
        • Barkmann R.
        • Eastell R.
        International variation in proximal femur bone mineral density.
        Osteoporos. Int. 2011; 22: 721-729
        • Nam H.S.
        • Kweon S.S.
        • Choi J.S.
        • Zmuda J.M.
        • Leung P.C.
        • Lui L.Y.
        • Hill D.D.
        • Patrick A.L.
        • Cauley J.A.
        Racial/ethnic differences in bone mineral density among older women.
        J. Bone Miner. Metab. 2013; 31: 190-198
        • Looker A.C.
        • Melton III, L.J.
        • Borrud L.G.
        • Shepherd J.A.
        Lumber spine bone mineral density in US adults: demographic patterns and relationship with femur neck skeletal status.
        Osteoporos. Int. 2012; 23: 1351-1360
        • Park E.J.
        • Joo I.W.
        • Jang M.-J.
        • Kim Y.T.
        • Oh K.
        • Oh H.J.
        Prevalence of osteoporosis in the Korean population based on Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2011.
        Yonsei Med. J. 2014; 55: 1049-1057
        • Sowers M.R.
        • Zheng H.
        • Greendale G.A.
        • Neer R.M.
        • Cauley J.A.
        • Ellis J.
        • Johnson S.
        • Finkelstein J.S.
        Changes in bone resorption across the menopause transition: effects of reproductive hormones, body size and ethnicity.
        J. Clin. Endocrinol. Metab. 2013; 98: 2854-2863
        • Cauley J.A.
        • Robbins J.
        • Chen Z.
        • Cummings S.R.
        • Jackson R.D.
        • LaCroix A.Z.
        • LeBoff M.
        • Lewis C.E.
        • McGowan J.
        • Neuner J.
        • Pettinger M.
        • Stefanick M.L.
        • Wactawski-Wende J.
        • Watts N.B.
        Women’s Health Initiative Investigators: effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women's Health Initiative randomized trial.
        JAMA. 2003; 290: 1729-1738
        • Doren M.
        • Nilsson J.A.
        • Johnell O.
        Effects of specific post-menopausal hormone therapies on bone mineral density in post-menopausal women: a meta-analysis.
        Human Reprod. 2003; 18: 1737-1746
        • Thijssen J.H.
        Overview on the effects of progestins on bone.
        Maturitas. 2003; 46: S77-S87
        • de Villiers T.J.
        • Stevenson J.C.
        The WHI: the effect of hormone replacement therapy on fracture prevention.
        Climacteric. 2012; 15: 263-266
        • Douchi T.
        • Yamamoto S.
        • Oki T.
        • Maruta K.
        • Kuwahata R.
        • Yamasaki H.
        • Nagata Y.
        Difference in the effect of adiposity one bone density between pre- and postmenopausal women.
        Maturitas. 2000; 34: 261-266
        • Lee S.T.
        • Goh J.C.H.
        • Low S.L.
        • Bose K.
        J. Musculoskelet. Res. 1997; 1: 41-46
        • Namwongprom S.
        • Rojnastein S.
        • Mangklabruks A.
        • Soontrapa S.
        • Wongboontan C.
        • Ongphiphadhanakul B.
        Importance of ethnic base standard references for the diagnosis of osteoporosis in Thai women.
        J. Clin. Densitometr.: Assessm. Skelet. Health. 2012; 15: 295-301