Advertisement

Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome

  • Alois Jungbauer
    Correspondence
    Corresponding author. Tel.: +43 1476546226; fax: +43 1476546675.
    Affiliations
    Department of Biotechnology and Christian Doppler Laboratory of Receptor Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
    Search for articles by this author
  • Svjetlana Medjakovic
    Affiliations
    Department of Biotechnology and Christian Doppler Laboratory of Receptor Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
    Search for articles by this author

      Abstract

      Obesity and metabolic syndrome are increasing global health problems. In addition to the malnutrition of a sedentary lifestyle, high calorie intake leads to obesity with many negative health consequences. Macrophages infiltrate adipose tissue and induce chronic inflammation by secreting pro-inflammatory cytokines, including COX-2 and iNOS, among other mediators of inflammation. Free fatty acids mediate adipose tissue signalling through toll-like receptor 4 and the expression of these pro-inflammatory mediators via NF-κB or JNK. PPAR γ activators can inhibit the activation of NF-κB, down-regulating the expression of pro-inflammatory cytokines. Here we provide an overview of how different culinary herbs and spices exert anti-inflammatory activities and the extent to which they activate PPAR α and PPAR γ, inhibit the activation of NF-κB, and enhance expression of anti-inflammatory cytokines. Spices can play essential roles as anti-inflammatory agents in our diet, acting as pan PPAR activators and improving insulin sensitivity, counteracting dyslipidaemia and weight gain. The effects of chronic inflammation caused by obesity are counteracted and, consequently, the progression of diseases associated with chronic inflammation slowed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ward P.A.
        Acute and chronic inflammation.
        Cambridge University Press, Cambridge2010
        • Mantovani A.
        • Cassatella M.A.
        • Costantini C.
        • Jaillon S.
        Neutrophils in the activation and regulation of innate and adaptive immunity.
        Nat Rev Immunol. 2011; 11: 519-531
        • Fain J.N.
        Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells.
        Vitam Horm. 2006; 74: 443-477
        • Butterfield T.A.
        • Best T.M.
        • Merrick M.A.
        The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair.
        J Athl Training. 2006; 41: 457-465
        • Sears B.
        Anti-inflammatory diets for obesity and diabetes.
        J Am Coll Nutr. 2009; 28: 482S-491S
        • Weisberg S.P.
        • McCann D.
        • Desai M.
        • Rosenbaum M.
        • Leibel R.L.
        • Ferrante Jr., A.W.
        Obesity is associated with macrophage accumulation in adipose tissue.
        J Clin Invest. 2003; 112: 1796-1808
        • Hirai S.
        • Takahashi N.
        • Goto T.
        • et al.
        Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies.
        Mediators Inflamm. 2010; (2010)
        • Turner J.J.
        • Foxwell K.M.
        • Kanji R.
        • et al.
        Investigation of nuclear factor-kappaB inhibitors and interleukin-10 as regulators of inflammatory signalling in human adipocytes.
        Clin Exp Immunol. 2011; 162: 487-493
        • Rodriguez-Calvo R.
        • Serrano L.
        • Coll T.
        • et al.
        Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2.
        Diabetes. 2008; 57: 2149-2157
        • Schaeffler A.
        • Gross P.
        • Buettner R.
        • et al.
        Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity.
        Immunology. 2009; 126: 233-245
        • Martin H.
        Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components.
        Mutat Res – Fundam Mol Mech Mutagen. 2009; 669: 1-7
        • Martin H.
        Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components.
        Mutat Res – Fundam Mol Mech Mutagen. 2010; 690: 57-63
        • Mueller M.
        • Beck V.
        • Jungbauer A.
        PPAR α activation by culinary herbs and spices.
        Planta Med. 2011; 77: 497-504
        • Mueller M.
        • Lukas B.
        • Novak J.
        • Simoncini T.
        • Genazzani A.R.
        • Jungbauer A.
        Oregano: a source for peroxisome proliferator-activated receptor γ antagonists.
        J Agric Food Chem. 2008; 56: 11621-11630
        • Xiao C.
        • Ghosh S.
        Adv Exp Med Biol. 2005; 560: 41-45
        • Necela B.M.
        • Su W.
        • Thompson E.A.
        Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor Î3 and nuclear factor-ΰB in macrophages.
        Immunology. 2008; 125: 344-358
        • Zoechling A.
        • Liebner F.
        • Jungbauer A.
        Red wine: a source of potent ligands for peroxisome proliferator-activated receptor g.
        Food Funct. 2011; 2: 28-38
        • Cavet M.E
        • Harrington K.L.
        • Vollmer T.R.
        • Ward K.W.
        • Zhang J.Z.
        Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells.
        Mol Vis. 2011; 17: 533-542
        • Chen C.W.
        • Lee S.T.
        • Wu W.T.
        • Fu W.M.
        • Ho F.M.
        • Lin W.W.
        Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages.
        Br J Pharmacol. 2003; 140: 1077-1087
        • Mueller M.
        • Hobiger S.
        • Jungbauer A.
        Anti-inflammatory activity of extracts from fruits, herbs and spices.
        Food Chem. 2010; 122: 987-996
        • Watzl B.
        Anti-inflammatory effects of plant-based foods and of their constituents.
        Int J Vitam Nutr Res. 2008; 78: 293-298
        • Jung M.
        • Hwang Y.
        • Kim H.Y.
        • et al.
        Analyses of capsaicinoids and ascorbic acid in pepper (Capsicum annum L.) breeding lines.
        J Korean Soc Food Sci Nutr. 2010; 39: 1705-1709
        • Appendino G.
        • Minassi A.
        • Daddario N.
        Hot cuisine as a source of anti-inflammatory drugs.
        Phytochem Rev. 2005; 4: 3-10
        • Chowdhury B.
        • Mukhopadhyay S.
        • Bhattacharayay D.
        • De Amit K.
        Capsaicin, a unique anti-oxidant, anti-inflammatory, analgesic compound with antifungal activity against dermatophytes.
        Med Sci Res. 1996; 24: 669-670
        • Johnson Jr., W.
        Final report on the safety assessment of Capsicum annuum extract, Capsicum annuum fruit extract, Capsicum annuum resin, Capsicum annuum fruit powder, Capsicum frutescens fruit, Capsicum frutescens fruit extract, Capsicum frutescens resin, and Capsaicin.
        Int J Toxicol. 2007; 26: 3-106
        • Lee I.O.
        • Lee K.H.
        • Pyo J.H.
        • Kim J.H.
        • Choi Y.J.
        • Lee Y.C.
        Anti-inflammatory effect of capsaicin in Helicobacter pylori-infected gastric epithelial cells.
        Helicobacter. 2007; 12: 510-517
        • Tuntipopipat S.
        • Muangnoi C.
        • Chingsuwanrote P.
        • et al.
        Anti-inflammatory activities of red curry paste extract on lipopolysaccharide-activated murine macrophage cell line.
        Nutrition. 2011; 27: 479-487
        • Tuntipopipat S.
        • Muangnoi C.
        • Failla M.L.
        Anti-inflammatory activities of extracts of thai spices and herbs with lipopolysaccharide-activated RAW 264.7 murine macrophages.
        J Med Food. 2009; 12: 1213-1220
        • Turkmen N.
        • Sari F.
        • Velioglu Y.S.
        The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables.
        Food Chem. 2005; 93: 713-718
        • Heinerman J.
        The complete book of spices, their medical, nutritional and cooking uses.
        Keats Publishing Inc., New Canaan, CT1983
        • Duke J.A.
        The green pharmacy: new discoveries in herbal remedies for common diseases and conditions from the world's foremost authority on healing herbs.
        Rodale Press, New York, NY1997
        • Power M.
        • Pratley R.
        Alternative and complementary treatments for metabolic syndrome.
        Curr Diab Rep. 2011; 11: 173-178
        • Rocha M.P.
        • Marcondes J.A.M.
        • Barcellos C.R.G.
        • et al.
        Dyslipidemia in women with polycystic ovary syndrome: incidence, pattern and predictors.
        Gynecol Endocrinol. 2011; 27: 814-819
        • Raja-Khan N.
        • Stener-Victorin E.
        • Wu X.
        • Legro R.S.
        The physiological basis of complementary and alternative medicines for polycystic ovary syndrome.
        Am J Physiol – Endocrinol Metab. 2011; 301: E1-E10
        • Davis P.A.
        • Yokoyama W.
        Cinnamon intake lowers fasting blood glucose: meta-analysis.
        J Med Food. 2011; 14: 884-889
        • Mohamed Sham Shihabudeen H.
        • Hansi Priscilla D.
        • Thirumurugan K.
        Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats.
        Nutr Metab. 2001; 8
        • Gad M.Z.
        • El-Sawalhi M.M.
        • Ismail M.F.
        • El-Tanbouly N.D.
        Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites.
        Mol Cell Biochem. 2006; 281: 173-183
        • Liu Y.
        • Kakani R.
        • Nair M.G.
        Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities.
        Food Chem. 2011; ([Electronically available])
        • Berrehal D.
        • Boudiar T.
        • Hichem L.
        • et al.
        Comparative composition of four essential oils of oregano used in Algerian and Jordanian folk medicine.
        Nat Prod Commun. 2010; 5: 957-960
        • Singletary K.
        Oregano: overview of the literature on health benefits.
        Nutr Today. 2010; 45: 129-138
        • Marc E.B.
        • Nelly A.
        • Annick D.D.
        • Frederic D.
        Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon.
        J Ethnopharmacol. 2008; 120: 315-334
        • Pieroni A.
        • Gray C.
        Herbal and food folk medicines of the Russlanddeutschen living in Künzelsau/Taläcker, South-Western Germany.
        Phytother Res. 2008; 22: 889-901
        • Feldmann J.M.
        • Wiemann C.M.
        • Sever L.
        • Hergenroeder A.C.
        Folk and traditional medicine use by a subset of Hispanic adolescents.
        Int J Adolesc Med Health. 2008; 20: 41-51
        • Stamatis G.
        • Kyriazopoulos P.
        • Golegou S.
        • Basayiannis A.
        • Skaltsas S.
        • Skaltsa H.
        In vitro anti-Helicobacter pylori activity of Greek herbal medicines.
        J Ethnopharmacol. 2003; 88: 175-179
        • Park J.B.
        Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme.
        Int J Food Sci Nutr. 2011; 62: 577-584
        • Thiemermann C.
        The spice of life: curcumin reduces the mortality associated with experimental sepsis.
        Crit Care Med. 2006; 34: 2009-2011
        • Aggarwal B.B.
        • Sundaram C.
        • Malani N.
        • Ichikawa H.
        Adv Exp Med Biol. 2007; 595: 1-75
        • Goel A.
        • Kunnumakkara A.B.
        • Aggarwal B.B.
        Curcumin as “Curecumin”: from kitchen to clinic.
        Biochem Pharmacol. 2008; 75: 787-809
        • Hsu C.H.
        • Cheng A.L.
        Adv Exp Med Biol. 2007; 595: 471-480
        • Schaffer M.
        • Schaffer P.M.
        • Zidan J.
        • Sela G.B.
        Curcuma as a functional food in the control of cancer and inflammation.
        Curr Opin Clin Nutr Metab Care. 2011; 14: 588-597
        • Sinha R.
        • Anderson D.E.
        • McDonald S.S.
        • Greenwald P.
        Cancer risk and diet in India.
        J Postgrad Med. 2003; 49: 222-228
        • Zhang M.
        • Deng C.
        • Zheng J.
        • Xia J.
        • Sheng D.
        Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma.
        Int Immunopharmacol. 2006; 6: 1233-1242
        • Siddiqui A.M.
        • Cui X.
        • Wu R.
        • et al.
        The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-Î3.
        Crit Care Med. 2006; 34: 1874-1882
        • Von Knethen A.
        • Soller M.
        • Brüne B.
        Peroxisome proliferator-activated receptor Î3 (PPARÎ3) and sepsis.
        Arch Immunol Ther Exp (Warsz). 2007; 55: 19-25
        • Jiang F.
        • Yu T.
        • Liu X.
        • Ding Z.
        • Ma Z.
        • Shi N.
        2011 international conference on remote sensing environment and transportation engineering, RSETE 2011 – proceedings2001: 3878-3881
        • Alappat L.
        • Awad A.B.
        Curcumin and obesity: evidence and mechanisms.
        Nutr Rev. 2010; 68: 729-738
        • Shehzad A.
        • Ha T.
        • Subhan F.
        • Lee Y.S.
        New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases.
        Eur J Nutr. 2011; 50: 151-161
        • Ejaz A.
        • Wu D.
        • Kwan P.
        • Meydani M.
        Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.
        J Nutr. 2009; 139: 919-925
        • Hwang J.T.
        • Park I.J.
        • Shin J.I.
        • et al.
        and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase.
        Biochem Biophys Res Commun. 2005; 338: 694-699
        • Hsu C.L.
        • Yen G.C.
        Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells.
        J Agric Food Chem. 2007; 55: 1730-1736
        • Zhang L.L.
        • Yan Liu D.
        • Ma L.Q.
        • et al.
        Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity.
        Circ Res. 2007; 100: 1063-1070
        • Hursel R.
        • Westerterp-Plantenga M.S.
        Thermogenic ingredients and body weight regulation.
        Int J Obes (Lond). 2010; 34: 659-669
        • Kang J.H.
        • Goto T.
        • Han I.S.
        • Kawada T.
        • Kim Y.M.
        • Yu R.
        Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet.
        Obesity (Silver Spring). 2010; 18: 780-787
        • Satyanarayana M.N.
        Capsaicin and gastric ulcers.
        Crit Rev Food Sci Nutr. 2006; 46: 275-328
        • Archer V.E.
        • Jones D.W.
        Capsaicin pepper, cancer and ethnicity.
        Med Hypotheses. 2002; 59: 450-457
        • Bode A.M.
        • Dong Z.
        The two faces of capsaicin.
        Cancer Res. 2011; 71: 2809-2814
        • Shah S.S.
        • Shah G.B.
        • Singh S.D.
        • et al.
        Effect of piperine in the regulation of obesity-induced dyslipidemia in high-fat diet rats.
        Indian J Pharmacol. 2011; 43: 296-299
        • Diwan V.
        • Poudyal H.
        • Brown L.
        Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats.
        Cell Biochem Biophys. 2011; ([Electronically available])
        • Kowalski J.
        • Samojedny A.
        • Paul M.
        • Pietsz G.
        Apigenin inhibits release and gene expression of monocyte chemoattractant protein 1 (MCP-1) in J774.2 macrophages.
        Wiad Lek. 2006; 59: 634-638
        • Ganjare A.B.
        • Nirmal S.A.
        • Patil A.N.
        Use of apigenin from Cordia dichotoma in the treatment of colitis.
        Fitoterapia. 2011; 82: 1052-1056
        • Myoung H.J.
        • Kim G.
        • Nam K.W.
        Apigenin isolated from the seeds of Perilla frutescens britton var crispa (Benth.) inhibits food intake in C57BL/6J mice.
        Arch Pharm Res. 2010; 33: 1741-1746
        • Comalada M.
        • Camuesco D.
        • Sierra S.
        • et al.
        In vivo quercetin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-ΰB pathway.
        Eur J Immunol. 2005; 35: 584-592
        • Talpur N.
        • Echard B.
        • Ingram C.
        • Bagchi D.
        • Preuss H.
        Effects of a novel formulation of essential oils on glucose-insulin metabolism in diabetic and hypertensive rats: a pilot study.
        Diabetes Obes Metab. 2005; 7: 193-199
        • Baliga M.S.
        • Haniadka R.
        • Pereira M.M.
        • et al.
        Update on the chemopreventive effects of ginger and its phytochemicals.
        Crit Rev Food Sci Nutr. 2011; 51: 499-523
        • Sekiya K.
        • Ohtani A.
        • Kusano S.
        Enhancement of insulin sensitivity in adipocytes by ginger.
        Biofactors. 2004; 22: 153-156
        • Yadav V.R.
        • Prasad S.
        • Sung B.
        • Aggarwal B.B.
        The role of chalcones in suppression of NF-ΰB-mediated inflammation and cancer.
        Int Immunopharmacol. 2011; 11: 295-309
        • Lee J.H.
        • Jung H.S.
        • Giang P.M.
        • et al.
        Blockade of nuclear factor-kappaB signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera.
        J Pharmacol Exp Ther. 2006; 316: 271-278
        • Ahmad S.
        • Israf D.A.
        • Lajis N.H.
        • et al.
        Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood.
        Eur J Pharmacol. 2006; 538: 188-194
        • Israf D.A.
        • Khaizurin T.A.
        • Syahida A.
        • Lajis N.H.
        • Khozirah S.
        Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-kappaB nuclear translocation and Ikappa-B phosphorylation in RAW 264.7 macrophage cells.
        Mol Immunol. 2007; 44: 673-679
        • Chen C.
        • Yu R.
        • Owuor E.D.
        • Tony Kong A.N.
        Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death.
        Arch Pharm Res. 2000; 23: 605-612
        • Anand P.
        • Kunnumakkara A.
        • Newman R.
        • Aggarwal B.B.
        Bioavailability of curcumin: problems and promises.
        Mol Pharm. 2007; 4: 807-818
        • Othman Z.A.
        • Ahmed Y.B.
        • Habila M.A.
        • Ghafar A.A.
        Determination of capsaicin and dihydrocapsaicin in capsicum fruit samples using high performance liquid chromatography.
        Molecules. 2011; 16: 8919-8929
        • Kozukue N.
        • Han J.S.
        • Kozukue E.
        • et al.
        Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry.
        J Agric Food Chem. 2005; 53: 9172-9181
        • Choi S.H.
        • Suh B.S.
        • Kozukue E.
        • Kozukue N.
        • Levin C.E.
        • Friedman M.
        Analysis of the contents of pungent compounds in fresh Korean red peppers and in pepper-containing foods.
        J Agric Food Chem. 2006; 54: 9024-9031
        • Ninfali P.
        • Mea G.
        • Giorgini S.
        • Rocchi M.
        • Bacchiocca M.
        Antioxidant capacity of vegetables, spices and dressings relevant to nutrition.
        Br J Nutr. 2005; 93: 257-266
        • Iyer L.V.
        • Ho M.N.
        • Shinn W.M.
        • et al.
        Glucuronidation of 1′-hydroxyestragole (1′-HE) by human UDP-glucuronosyltransferases UGT2B7 and UGT1A9.
        Toxicol Sci. 2003; 73: 36-43
        • He S.M.
        • Chan E.
        • Zhou S.F.
        ADME properties of herbal medicines in humans: evidence, challenges and strategies.
        Curr Pharm Des. 2011; 17: 357-407
        • Nutescu E.
        • Chuatrisorn I.
        • Hellenbart E.
        Drug and dietary interactions of warfarin and novel oral anticoagulants: an update.
        J Thromb Thrombolysis. 2011; 31: 326-343
        • Han Y.
        • Chin Tan T.M.
        • Lim L.Y.
        In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression.
        Toxicol Appl Pharmacol. 2008; 230: 283-289
        • Han Y.
        • Tan T.M.
        • Lim L.Y.
        Effects of capsaicin on P-gp function and expression in Caco-2 cells.
        Biochem Pharmacol. 2006; 71: 1727-1734
        • Ammon H.P.T.
        • Wahl M.A.
        Pharmacology of Curcuma longa.
        Planta Med. 1991; 57: 1-7
        • Wahlstrom B.
        • Blennow G.
        A study on the fate of curcumin in the rat.
        Acta Pharmacol Toxicol (Copenh). 1978; 43: 86-92
        • Yu H.
        • Huang Q.
        Investigation of the absorption mechanism of solubilized curcumin using Caco-2 cell monolayers.
        J Agric Food Chem. 2011; 59: 9120-9126
        • Altunbas A.
        • Lee S.J.
        • Rajasekaran S.A.
        • Schneider J.P.
        • Pochan D.J.
        Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles.
        Biomaterials. 2010; 32: 5906-5914
        • Yallapu M.M.
        • Jaggi M.
        • Chauhan S.C.
        Curcumin nanoformulations: a future nanomedicine for cancer.
        Drug Discovery Today. 2011;
        • Holder G.M.
        • Plummer J.L.
        • Ryan A.J.
        The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat.
        Xenobiotica. 1978; 8: 761-768
        • Lafay S.
        • Gil-Izquierdo A.
        Bioavailability of phenolic acids.
        Phytochem Rev. 2008; 7: 301-311
        • Baba S.
        • Osakabe N.
        • Natsume M.
        • Terao J.
        Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid.
        Life Sci. 2004; 75: 165-178
        • Konishi Y.
        • Kobayashi S.
        Transepithelial transport of rosmarinic acid in intestinal Caco-2 cell monolayers.
        Biosci Biotechnol Biochem. 2005; 69: 583-591
        • Baba S.
        • Osakabe N.
        • Natsume M.
        • et al.
        Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans.
        Eur J Nutr. 2005; 44: 1-9
        • Zick S.M.
        • Djuric Z.
        • Ruffin M.T.
        • et al.
        Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 1930-1936
        • Marcason W.
        What is the anti-inflammatory diet?.
        J Am Diet Assoc. 2011; 110: 1780
        • Mueller M.
        • Jungbauer A.
        Culinary plants, herbs and spices – a rich source of PPARγ ligands.
        Food Chem. 2009; 117: 660-667
        • Singletary K.
        Black pepper: overview of health benefits.
        Nutr Today. 2011; 45: 43-47
        • Kwon H.K.
        • Hwang J.S.
        • Lee C.G.
        • et al.
        Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells.
        World J Gastroenterol. 2011; 17: 976-986
        • Hotta M.
        • Nakata R.
        • Katsukawa M.
        • Hori K.
        • Takahashi S.
        • Inoue H.
        Carvacrol, a component of thyme oil, activates PPAR α and γ and suppresses COX-2 expression.
        J Lipid Res. 2010; 51: 132-139
        • Chan M.M.Y
        • Ho C.T.
        • Huang H.I.
        Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production.
        Cancer Lett. 1995; 96: 23-29
        • Grzanna R.
        • Lindmark L.
        • Frondoza C.G.
        Ginger – an herbal medicinal product with broad anti-inflammatory actions.
        J Med Food. 2005; 8: 125-132
        • Katsukawa M.
        • Nakata R.
        • Takizawa Y.
        • Hori K.
        • Takahashi S.
        • Inoue H.
        Citral, a component of lemongrass oil, activates PPAR α and γ and suppresses COX-2 expression.
        Biochim Biophys Acta: Mol Cell Biol Lipids. 2010; 1801: 1214-1220
        • Aggarwal B.B.
        • Shishodia S.
        Ann New York Acad Sci. 2004; 1030: 434-441
        • Nicholas C.
        • Batra S.
        • Vargo M.A.
        • et al.
        Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation.
        J Immunol. 2007; 179: 7121-7127
        • Mueller M.
        • Hobiger S.
        • Jungbauer A.
        Red clover extract: a source for substances that activate peroxisome proliferator-activated receptor alpha and ameliorate the cytokine secretion profile of lipopolysaccharide-stimulated macrophages.
        Menopause. 2010; 17: 379-387
        • Park J.Y.
        • Kawada T.
        • Han I.S.
        • et al.
        Capsaicin inhibits the production of tumor necrosis factor γ by LPS-stimulated murine macrophages, RAW 264. 7: a PPARÎ3 ligand-like action as a novel mechanism.
        FEBS Lett. 2004; 572: 266-270
        • Kim C.S.
        • Kawada T.
        • Kim B.S.
        • et al.
        Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages.
        Cell Signal. 2003; 15: 299-306
        • Landa P.
        • Kokoska L.
        • Pribylova M.
        • Vanek T.
        • Marsik P.
        In vitro anti-inflammatory activity of carvacrol: inhibitory effect on COX-2 catalyzed prostaglandin E2 biosynthesisb.
        Arch Pharm Res. 2009; 32: 75-78
        • Dong S.Z.
        • Zhao S.P.
        • Wu Z.H.
        • et al.
        Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway.
        Mol Cell Biochem. 2011; 358: 281-285
        • Wang H.M.
        • Zhao Y.X.
        • Zhang S.
        • et al.
        PPARγ agonist curcumin reduces the amyloid-β-stimulated inflammatory responses in primary astrocytes.
        J Alzheimer's Dis. 2010; 20: 1189-1199
        • Gonzales A.M.
        • Orlando R.A.
        Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes.
        Nutr Metab. 2008; 5
        • Wang S.L
        • Li Y.
        • Wen Y.
        • et al.
        Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway.
        Biomed Environ Sci. 2009; 22: 32-39
        • Camacho-Barquero L.
        • Villegas I.
        • Sánchez-Calvo J.M.
        • et al.
        Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis.
        Int Immunopharmacol. 2007; 7: 333-342
        • Shah V.O.
        • Ferguson J.E.
        • Hunsaker L.A.
        • Deck L.M.
        • Vander Jagt D.L.
        Natural products inhibit LPS-induced activation of pro-inflammatory cytokines in peripheral blood mononuclear cells.
        Nat Prod Res. 2010; 24: 1177-1188
        • Choi C.Y.
        • Park K.R.
        • Lee J.H.
        • et al.
        Isoeugenol suppression of inducible nitric oxide synthase expression is mediated by down-regulation of NF-ΰB, ERK1/2, and p38 kinase.
        Eur J Pharmacol. 2007; 576: 151-159
        • Jung H.J.
        • Song Y.S.
        • Kim K.
        • Lim C.J.
        • Park E.H.
        Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl vanillin.
        Arch Pharm Res. 2010; 33: 309-316
        • Lee T.Y.
        • Lee K.C.
        • Chen S.Y.
        • Chang H.H.
        6-Gingerol inhibits ROS and iNOS through the suppression of PKC-α and NF-κB pathways in lipopolysaccharide-stimulated mouse macrophages.
        Biochem Biophys Res Commun. 2009; 382: 134-139
        • Kim S.O.
        • Chun K.S.
        • Kundu J.K.
        • Surh Y.J.
        Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin.
        BioFactors (Oxford, England). 2004; 21: 27-31
        • Van Breemen R.B.
        • Tao Y.
        • Li W.
        Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale).
        Fitoterapia. 2011; 82: 38-43
        • Kempuraj D.
        • Madhappan B.
        • Christodoulou S.
        • et al.
        Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells.
        Br J Pharmacol. 2005; 145: 934-944
        • Kim H.K.
        • Cheon B.S.
        • Kim Y.H.
        • Kim S.Y.
        • Kim H.P.
        Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships.
        Biochem Pharmacol. 1999; 58: 759-765
        • Kumar S.
        • Singhal V.
        • Roshan R.
        • Sharma A.
        • Rembhotkar G.W.
        • Ghosh B.
        Piperine inhibits TNF-α induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kB and IκB kinase activation.
        Eur J Pharmacol. 2007; 575: 177-186
        • Isa Y.
        • Miyakawa Y.
        • Yanagisawa M.
        • et al.
        6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-α±mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes.
        Biochem Biophys Res Commun. 2008; 373: 429-434
        • Pan M.H.
        • Hsieh M.C.
        • Hsu P.C.
        • et al.
        6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages.
        Mol Nutr Food Res. 2008; 52: 1467-1477
        • Kim M.C.
        • Kim S.J.
        • Kim D.S.
        • et al.
        Vanillic acid inhibits inflammatory mediators by suppressing NF-kappaB in lipopolysaccharide-stimulated mouse peritoneal macrophages.
        Immunopharmacol Immunotoxicol. 2011; 33: 525-532
        • Desvergne B.
        • Wahli W.
        Peroxisome proliferator-activated receptors: nuclear control of metabolism.
        Endocr Rev. 1999; 20: 649-688