Research Article| Volume 49, ISSUE 1, P2-15, September 24, 2004

Development of the human breast


      The human breast undergoes a complete series of changes from intrauterine life to senescence. These changes can be divided into two distinct phases; the developmental phase and the differentiation phase. The developmental phase includes the early stages of gland morphogenesis, from nipple epithelium to lobule formation. In lobule formation, both processes, development and differentiation, take place almost simultaneously. For example, the progressive transition of lobule type 1 to types 2, 3, and 4 requires active cell proliferation, to acquire the cell mass necessary for the function of milk secretion. This later process implies differentiation of the mammary epithelium. Therefore, the presence of lobule type 4 is the maximal expression of development and differentiation in the adult gland, whereas the presence of lobule type 3 could indicate that the gland has already been developed. It is important to point out that the presence of proteins that are indicative of milk secretion, such as α-lactalbumin, casein, or milk fat lobule type membrane protein, also indicates cellular differentiation of breast epithelium. However, only when all the other components of milk, (such as lactose, α-lactalbumin, casein and milk fat) are coordinately synthesized within the appropriate structure can full differentiation of the mammary gland be acknowledged.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • MacMahon B.
        • Cole P.
        • Liu M.
        • et al.
        Age at first birth and breast cancer risk.
        Bull. World Health Organ. 1970; 34: 209-221
        • Parker S.L.
        • Tong T.
        • Bolden S.
        • Wingo P.A.
        Cancer statistics CA-cancer.
        J. Clin. 1996; 65: 5-27
        • Russo I.H.
        • Russo J.
        Mammary gland neoplasia in long-term rodent studies.
        Environ. Health Perspect. 1996; 104: 938-967
      1. Russo J, Russo IH. In: Neville MC, Daniel CW, editors. The mammary gland. New York, NY: Plenum Publishing Corporation; 1987. p. 67–93.

        • Chu K.C.
        • Tarone R.E.
        • Brawley O.W.
        Breast cancer trends of black women compared with white women.
        Arch. Family Med. 1999; 8: 521-528
        • McGregor D.H.
        • Land C.E.
        • Choi K.
        • et al.
        Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki 1950–1989.
        J. Natl. Cancer Inst. 1977; 59: 799-811
        • De Waard F.
        • Trichopoulos D.
        A unifying concept of the etiology of breast cancer.
        Int. J. Cancer. 1988; 41: 666-669
        • Henderson B.E.
        • Ross R.K.
        • Pike M.C.
        Hormonal chemoprevention of cancer in women.
        Science. 1993; 9: 633-638
        • Briand P.
        • Petersen O.W.
        • van Dews B.
        A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium.
        In vitro Cell Dev. Biol. 1987; 23: 181-188
        • Rosner B.
        • Colditz G.A.
        • Willett W.C.
        Reproductive risk factors in a prospective study of breast cancer: the nurses health study.
        Am. J. Epidemiol. 1994; 139: 819-835
        • Russo H.
        • Russo J.
        Role of hCG and inhibin in breast cancer.
        Int. J. Oncol. 1994; 4: 297-306
        • Hu Y.F.
        • Russo I.H.
        • Ao X.
        • Russo J.
        Mammary derived growth inhibitor MDGI) cloned from human breast epithelial cells is expressed in fully differentiated lobular structures.
        Int. J. Oncol. 1997; 11: 5-11
        • Hu Y.F.
        • Silva I.D.C.G.
        • Russo I.H.
        • Ao X.
        • Russo J.
        A novel serpin gene cloned from differentiated human breast epithelial cells is a potential tumor suppressor.
        Proc. Am. Assoc. Cancer Res. 1998; 39: 775
      2. Mailo D, Russo J, Sheriff F, et al. Genomic signature induced my differentiation in the rat mammary gland. Proc Am Assoc Cancer Res 2002;43a.

        • Russo J.
        • Reina D.
        • Frederick J.
        • Russo I.H.
        Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro.
        Cancer Res. 1988; 48: 2837-2857
        • Russo J.
        • Mills M.J.
        • Moussalli M.J.
        • Russo I.H.
        Influence of breast development and growth properties in vitro.
        In vitro Cell Dev. Biol. 1989; 25: 643-649
        • Russo J.
        • Gusterson B.A.
        • Rogers A.E.
        • Russo I.H.
        • Wellings S.R.
        • Van Zwieten M.J.
        Comparative study of human and rat mammary tumorigenesis.
        Lab. Invest. 1991; 62: 1-32
        • Russo J.
        • Romero A.L.
        • Russo I.H.
        Architectural pattern of the normal and cancerous breast under the influence of parity.
        J. Cancer Epidemiol. Biomarkers Prevent. 1994; 3: 219-224
        • Russo J.
        • Rivera R.
        • Russo I.H.
        Influence of age and parity on the development of the human breast.
        Breast Cancer Res. Treat. 1992; 23: 211-218
        • Russo J.
        • Hu Y.-F.
        • Silva I.D.C.G.
        • Russo I.H.
        Cancer risk related to mammary gland structure and development.
        Microscopy Res. Technique. 2001; 52: 204-223
        • Russo J.
        • Tay L.K.
        • Russo I.H.
        Differentiation of the mammary gland and susceptibility to carcinogenesis.
        Breast Cancer Res. Treat. 1982; 2: 5-73
      3. The development of the reproductive system. In: Tanner JM, editor. Growth at adolescence. Oxford, UK: Blackwell Scientific; 1962. p. 28–39.

      4. Development of the female breast. In: Vorherr H, editor. The breast. New York: Academic Press; 1974. p. 1–18.

        • Hu Y.F.
        • Russo I.H.
        • Zalipsky U.
        • Russo J.
        Lack of involvement of bcl2 and cyclin D1 in the early phases of human breast epithelial cell transformation by environmental chemical carcinogens.
        Proc. Am. Assoc. Cancer Res. 1996; 37: 1005a
        • Russo J.
        • Russo I.H.
        Role of differentiation in the pathogenesis and prevention of breast cancer.
        Endocr. Relat. Cancer. 1997; 4: 1-15
        • Russo J.
        • Hu Y.F.
        • Yang X.
        • Russo I.H.
        Developmental, cellular, and molecular basis of human breast cancer.
        J. Natl. Cancer Inst. Monogr. 2000; 27: 17-38
      5. Russo J, Russo IH. Development of the human breast. In: Knobil E, Neill JD, editors. Encyclopedia of reproduction, vol. 3. New York: Academic Press; 1998. p. 71–80.

        • Russo J.
        • Russo I.H.
        The cellular basis of breast cancer susceptibility.
        Oncol. Res. 1999; 11: 169-178
        • Russo J.
        • Russo I.H.
        Development pattern of human breast and susceptibility to carcinogenesis.
        Eur. J. Cancer Prevent. 1993; 2: 85-100
        • Russo J.
        • Russo I.H.
        Toward a physiological approach to breast cancer prevention..
        Cancer Epidemiol. Biomarkers Prevent. 1994; 3: 353-364
        • Kumar V.
        • Stack G.S.
        • Berry M.
        • Jin J.R.
        • Chambon P.
        Functional domains of the human estrogen receptor.
        Cell. 1987; 51: 941-951
        • King R.J.B.
        Effects of steroid hormones and related compounds on gene transcription.
        Clin. Endocrinol. 1992; 36: 1-14
        • Soto A.M.
        • Sonnenschein C.
        Cell proliferation of estrogen-sensitive cells: the case for negative control.
        Endocr. Rev. 1987; 48: 52-58
        • Huseby R.A.
        • Maloney T.M.
        • McGrath C.M.
        Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cells in vitro.
        Cancer Res. 1987; 144: 2654-2659
        • Huff K.K.
        • Knabbe C.
        • Lindsey R.
        • et al.
        Multi-hormonal regulation of insulin-like growth factor-1-related protein in MCF-7 human breast cancer cells.
        Mol. Endocrinol. 1988; 2: 200-208
        • Dickson R.B.
        • Huff K.K.
        • Spencer E.M.
        • Lippman M.E.
        Introduction of epidermal growth factor related polipeptides by 17β-estradiol in MCF-7 human breast cancer cells.
        Endocrinology. 1986; 118: 138-142
        • Page M.J.
        • Field J.K.
        • Everett P.
        • Green C.D.
        Serum regulation of the estrogen responsiveness of the human breast cancer cell line MCF-7.
        Cancer Res. 1983; 43: 1244-1250
        • Katzenellenbogen B.S.
        • Kendra K.L.
        • Norman M.J.
        • Berthois Y.
        Proliferation, hormonal responsiveness and estrogen receptor content of MCF-7 human breast cancer cells growth in the short-term and long-term absence of estrogens.
        Cancer Res. 1987; 47: 4355-4360
        • Aakvaag A.
        • Utaacker E.
        • Thorsen T.
        • Lea O.A.
        • Lahooti H.
        Growth control of human mammary cancer cells MCF-7 cells in culture: effect of estradiol and growth factors in serum containing medium.
        Cancer Res. 1991; 50: 7806-8106
        • Dell’aquilla M.L.
        • Pigott D.A.
        • Bonaquist D.L.
        • Gaffney E.V.
        A factor from plasma derived human serum that inhibits the growth of the mammary cell line MCF-7: characterization and purification.
        J. Natl. Cancer Inst. 1984; 72: 291-298
        • Markaverich B.M.
        • Gregory R.R.
        • Alejandro M.A.
        • Clark J.H.
        • Johnson G.A.
        • Middleditch B.S.
        Methyl p-hydroxphenyllactate. An inhibitor of cell growth and proliferation and an endogenous ligand for nuclear type-11 binding sites.
        J. Biol. Chem. 1988; 263: 7203-7210
        • Russo J.
        • Ao X.
        • Grill C.
        • Russo I.H.
        Pattern of distribution of cells positive for estrogen receptor α and progesterone receptor in relation to proliferating cells in the mammary gland.
        Breast Cancer Res. Treat. 1999; 53: 217-227
        • Hall A.
        Rho GTPases and the actin cytoskeleton.
        Science. 1998; 279: 509-514
        • Foster R.
        • Hu K.Q.
        • Lu Y.
        • Nolan K.M.
        • Thissen J.
        • Settleman J.
        Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation.
        Mol. Cell Biol. 1996; 6: 2689-2699
        • Guasch R.M.
        • Scambler P.
        • Jones G.E.
        • Ridley A.J.
        RhoE regulates actin cytoskeleton organization and cell migration.
        Mol. Cell Biol. 1998; 18: 4761-4771
        • Peng Y.
        • Du K.
        • Ramirez S.
        • Diamond R.H.
        • Taub R.
        Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1 Egr-1 activation is an early event in liver regeneration.
        J. Biol. Chem. 1999; 274: 4513-4520
        • Takano S.
        • Fukuyama H.
        • Fukumoto M.
        • et al.
        PRL-1 a protein tyrosine phosphatase is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia..
        Brain Res. Mol. Brain Res. 1996; 40: 105-115
        • Diamond R.H.
        • Peters C.
        • Jung S.P.
        • et al.
        Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine.
        Am. J. Physiol. 1996; 271: 121-129
        • Rundle C.H.
        • Kappen C.
        Developmental expression of the murine Prl-1 protein tyrosine phosphatase gene.
        J. Exp. Zool. 1999; 283: 612-617
        • Peng Y.
        • Genin A.
        • Spinner N.B.
        • Diamond R.H.
        • Taub R.
        The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer.
        J. Biol. Chem. 1998; 273: 17286-17295
        • Phillips L.S.
        • Pao C.I.
        • Villafuerte B.C.
        Molecular regulation of insulin-like growth factor-I and its principal binding protein, IGFBP-3.
        Prog. Nucleic Acid Res. Mol. Biol. 1998; 60: 195-265
        • Oh Y.
        IGFBPs and neoplastic models: new concepts for roles of IGFBPs in regulation of cancer cell growth.
        Endocrine. 1997; 71: 111-113
        • Cubbage M.L.
        • Suwanichkul A.
        • Powell D.R.
        Insulin-like growth factor binding protein-3. Organization of the human chromosomal gene and demonstration of promoter activity.
        J. Biol. Chem. 1990; 265: 12642-12649
        • Coverley J.A.
        • Baxter R.C.
        Phosphorylation of insulin-like growth factor binding proteins.
        Mol. Cell Endocrinol. 1997; 128: 1-5
        • Brotherick I.
        • Robson C.N.
        • Bronell D.A.
        • et al.
        Cytokeratin expression in breast cancer: phenotypic changes associated with disease progression.
        Cytometry. 1998; 32: 301-308
        • Welch D.R.
        • Wei L.L.
        Genetic and epigenetic regulation of human breast cancer progression and metastasis.
        Endocr. Relat. Cancer. 1998; 5: 155-197
        • Aoki R.
        • Tanaka S.
        • Haruma K.
        • et al.
        MUC-1 expression as a predictor of the curative endoscopic treatment of submucosally invasive colorectal carcinoma.
        Dis. Colon Rectum. 1998; 41: 1262-1272
        • Segal Eiras A.
        • Croce M.V.
        Breast cancer associated mucin: a review.
        Allergol. Immunopathol. 1997; 25: 176-181
        • Manni A.
        • Badger B.
        • Wei L.
        • et al.
        Hormonal regulation of insulin-growth factor II and insulin growth factor binding protein expression by breast cancer cells in vivo evidence for epithelial stromal interactions.
        Cancer Res. 1994; 54: 2934-2942
        • Russo J.
        • Calaf G.
        • Russo I.H.
        A critical approach to the malignant transformation of human breast epithelial cells.
        CRC Crit. Rev. Oncogen. 1993; 4: 403-417