Advertisement

Preventive effects of Pueraria mirifica on bone loss in ovariectomized rats

      Abstract

      Objective

      Effects of Pueraria mirifica on bone loss in fully mature ovariectomized rats are examined.

      Methods

      Two series of experiments were performed. In the first series, rats were kept with their ovaries intact and divided into two groups; initial control (IC) and sham control (SH). The IC rats were sacrificed on day 1 and their data were kept as baseline control. The SH rats were subjected to sham operation on day 0 and gavaged daily with distilled water for 90 days. In the second series, rats were subjected to ovariectomy, divided into five groups and gavaged daily with 0.1 mg/kg B.W./day of 17-alpha-ethinylestradiol (EE), 0, 10, 100 and 1000 mg/kg B.W./day of P. mirifica (P0, P10, P100 and P1000, respectively) for 90 days. Changes of bone mineral density and bone mineral content were measured using peripheral Quantitative Computerized Tomography.

      Results

      Bone loss was significantly induced by ovariectomy and it was dose-dependently prevented by P. mirifica treatment for 90 days. The preventive effects of P. mirifica on bone loss depended on bone types (axial or long bone), bone sites (metaphysis or diaphysis), and bone compartments (trabecular and cortical). At P100 and P1000, bone loss was completely prevented both in trabecular bone mineral density and content. The effects of P. mirifica were, as expected, comparable to that in the EE group.

      Conclusion

      These results suggest that P. mirifica may be applicable to treat the osteoporosis in menopausal women; however, an undesirable side effect on stimulating reproductive organs should be concerned.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Maturitas
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Henry M.J.
        • Pasco J.A.
        • Nicholson G.C.
        • et al.
        Prevalence of osteoporosis in Australian women Geelong osteoporosis study.
        J Clin Densitom. 2000; 3: 261-268
        • Löfman O.
        • Larsson L.
        • Toss G.
        Bone mineral density in diagnosis of osteoporosis reference population, definition of peak bone mass, and measured site determine prevalence.
        J Clin Densitom. 2000; 3: 177-186
        • Riggs B.L.
        • Wahner H.W.
        • Seeman E.
        • et al.
        Changes in bone mineral density of the proximal femur and spine with aging: differences between the postmenopausal and senile osteoporosis syndromes.
        J Clin Invest. 1982; 70: 716-733
        • Ohta H.
        • Makita K.
        • Komukai S.
        • et al.
        Bone resorption versus estrogen loss following oophorectomy and menopause.
        Maturitas. 2002; 43: 27-33
        • Turner R.T.
        • Riggs B.L.
        • Spelsberg T.C.
        Skeletal effects of estrogen.
        Endocr Rev. 1994; 15: 275-300
        • Kenemans P.
        • Bosman A.
        Breast cancer and post-menopausal hormone therapy.
        Best Pract Res Clin Endocrinol. 2003; 17: 123-137
        • Fontanges E.
        • Fontana A.
        • Delmas P.
        Osteoporosis and breast cancer.
        Joint Bone Spine. 2004; 71: 102-110
        • Sulak P.J.
        Endometrial cancer and hormone replacement therapy: Appropriate use of progestins to oppose endogenous and exogenous.
        Endocrinol Metab Clin North Am. 1997; 26: 399-412
        • Canavan T.P.
        • Doshi N.R.
        Endometrial cancer.
        Am Fam Physician. 1999; 59: 3069-3077
        • Henderson B.E.
        • Feigelson H.S.
        Hormonal carcinogenesis.
        Carcinogenesis. 2000; 21: 427-433
        • Gruber C.J.
        • Tschugguel W.
        • Schneeberger C.
        • et al.
        Production and action of estrogens.
        N Eng J Med. 2002; 346: 340-352
        • Gustafsson J.A.
        Review: estrogen receptor-β a new dimension in estrogen mechanism of action.
        J Endocrinol. 1999; 163: 379-383
        • Hoyland J.A.
        • Mee A.P.
        • Baird P.
        • et al.
        Demonstration of estrogen receptor mRNA in bone using in situ reverse-transcriptase polymerase chain reaction.
        Bone. 1997; 20: 87-92
        • Onoe Y.
        • Miyaura C.
        • Ohta H.
        • et al.
        Expression of estrogen receptor β in rat bone.
        J Endocrinol. 1997; 138: 4509-4512
        • Swindahl S.H.
        • Norgard M.
        • Kuiper G.G.
        • et al.
        Cellular distribution of estrogen receptor beta in neonatal rat bone.
        Bone. 2000; 26: 117-121
        • Kuiper G.G.
        • Lemmen J.G.
        • Carlsson B.
        • et al.
        Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β.
        Endocrinology. 1998; 139: 4252-4263
        • Fanti P.
        • Monier-Faugere M.C.
        • Geng Z.
        • et al.
        The Phytoestrogen genistein reduces bone loss in short-term ovariectomized rats.
        Osteoporos Int. 1998; 8: 274-281
        • Ishida H.
        • Uesugi T.
        • Hirai K.
        • et al.
        Preventive effects of the plant isoflavones, daidzin and genistin on bone loss in ovariectomized rats fed a calcium-deficient diet.
        Biol Pharm Bull. 1998; 21: 62-66
        • Ishimi Y.
        • Arai N.
        • Wang X.
        • et al.
        Difference in effective dosage of genistein on bone and uterus in ovariectomized mice.
        Biochem Biophys Res Commun. 2000; 274: 697-701
        • Picherit C.
        • Coxam V.
        • Bennetau-Pelissero C.
        • et al.
        Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats.
        J Nutr. 2000; 130: 1675-1681
        • Ishimi Y.
        • Yoshida M.
        • Wakimoto S.
        • et al.
        Genistein, a soybean isoflavone, affects bone marrow lymphopoiesis and prevents bone loss in castrated male mice.
        Bone. 2002; 31: 180-185
        • Wang X.
        • Wu J.
        • Chiba H.
        • et al.
        Puerariae radix prevents bone loss in ovariectomized mice.
        J Bone Miner Metab. 2003; 21: 268-275
        • Malaivijitnond S.
        • Kiatthaipipat P.
        • Cherdshewasart W.
        • et al.
        Different effects of Pueraria mirifica, a herb containing phytoestrogens, on LH and FSH secretion in gonadectomized female and male rats.
        J Pharmacol Sci. 2004; 96: 428-435
        • Malaivijitnond S.
        • Chansri K.
        • Kijkuokool P.
        • et al.
        Using vaginal cytology to assess the estrogenic activity of phytoestrogen-rich herb.
        J Ethnopharmacol. 2006; 107: 354-360
        • Trisomboon H.
        • Malaivijitnond S.
        • Watanabe G.
        • et al.
        Ovulation block by Pueraria mirifica: a study of its endocrinological effect in female monkeys.
        Endocrine. 2005; 26: 33-40
        • Trisomboon H.
        • Malaivijitnond S.
        • Watanabe G.
        • et al.
        Estrogenic effect of Pueraria mirifica on the menstrual cycle and hormones related ovarian function in cyclic female cynomolgus monkeys.
        J Pharmacol Sci. 2004; 94: 51-59
        • Trisomboon H.
        • Malaivijitnond S.
        • Watanabe G.
        • et al.
        The Estrogenic effect of Pueraria mirifica on gonadotrophin levels in aged monkeys.
        Endocrine. 2006; 1: 129-134
        • Urasopon N.
        • Hamada Y.
        • Asaoka K.
        • et al.
        Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats.
        Maturitas. 2007; 56: 322-331
        • Pande I.
        Osteoporosis in men.
        Best Pract Res Clin Rheumatol. 2001; 15: 415-427
        • Olszynski W.P.
        • Shawn Davison K.
        • Adaci J.D.
        • et al.
        Osteoporosis in men: epidemiology, diagnosis, prevention, and treatment.
        Clin Ther. 2004; 26: 15-28
        • Frolik C.A.
        • Bryant H.U.
        • Black E.C.
        • et al.
        Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: effect of raloxifene HCl, tamoxifen, estrogen, and alendronate.
        Bone. 1996; 18: 621-627
        • Jaroenporn S.
        • Malaivijitnond S.
        • Wattanasirmkit K.
        • et al.
        Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to Pueraria mirifica.
        J Reprod Dev. 2007; 53: 995-1005
        • Muangman V.
        • Cherdshewasart W.
        Clinical trial of the phytoestrogen-rich herb Pueraria mirifica as a crude drug in the treatment of symptoms in menopausal women.
        Siriraj Hosp Gas. 2001; 53: 300-308
        • Cherdshewasart W.
        • Subtang S.
        • Dahlan W.
        Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata.
        J Pharm Biomed Anal. 2007; 43: 428-434
        • Miao D.
        • Scutt A.
        Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage.
        J Histochem Cytochem. 2002; 50: 333-340
        • Devareddy L.
        • Khalil D.A.
        • Smith B.J.
        • et al.
        Soy moderately improves microstructural properties without affecting bone mass in an ovariectomized rat model of osteoporosis.
        Bone. 2006; 38: 686-693
        • McMillan J.
        • Kinney R.C.
        • Ranly D.M.
        • et al.
        Osteoinductivity of demineralized bone matrix in immunocompromised mice and rats is decreased by ovariectomy and restored by estrogen replacement.
        Bone. 2007; 40: 111-121
        • Dang Z.C.
        • van Bezooijen R.L.
        • Karperien M.
        • et al.
        Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis.
        J Bone Miner Res. 2002; 17: 394-405
        • Tchernof A.
        • Poehlman E.T.
        Effects of the menopause transition on body fatness and body fat distribution.
        Obes Res. 1998; 6: 246-254
        • Joyner J.M.
        • Hutley L.J.
        • Cameron D.P.
        Estrogen receptors in human preadipocytes.
        Endocrine. 2001; 15: 225-230
        • Kippo K.
        • Hannuniemi R.
        • Virtamo T.
        • et al.
        The effects of clodromate on increased bone turnover and bone loss due to ovariectomy in rats.
        Bone. 1995; 17: 533-542
        • Ke H.Z.
        • Chen H.K.
        • Simmons H.A.
        • et al.
        Comparative effects of droloxifene, tamoxifen, and estrogen on bone, serum cholesterol and uterine histology in the ovariectomized rat model.
        Bone. 1997; 20: 31-39
        • Narayama Murthy P.S.
        • Sengupta S.
        • Sharma S.
        • et al.
        Effect of ormeloxifene on ovariectomy-induced bone resorption, osteoclast differentiation and apoptosis and TGF beta-3 expression.
        J Steroid Biochem Mol Biol. 2006; 100: 117-128
        • Thompson D.D.
        • Simmons H.A.
        • Pirie C.M.
        • et al.
        FDA guidelines and animal models for osteoporosis.
        Bone. 1995; 17: 125S-133S
        • Sietsema W.K.
        Animal models of cortical porosity.
        Bone. 1995; 17: 297S-305S
        • Mosekide L.
        Assessing bone quality animal models in preclinical osteoporosis research.
        Bone. 1995; 17: 343S-352S
        • Kimmel D.B.
        Animal models for in vivo experimentation in osteoporosis research.
        in: Marcus R. Feldman D. Kelsey J. Osteoporosis. Academic Press, New York1996: 1373
        • Yeh J.K.
        • Chen M.M.
        • Aloia J.F.
        Ovariectomy-induced high turnover in cortical bone is dependent on pituitary hormone in rats.
        Bone. 1996; 18: 443-450
        • Yoshitake K.
        • Yokota K.
        • Kasugai Y.
        • et al.
        Effects of 16 weeks of treatment with tibolone on bone mass and bone mechanical and histomorphometric indices in mature ovariectomized rats with established osteopenia on a low-calcium diet.
        Bone. 1999; 25: 311-319
        • Kohrt W.M.
        • Snead D.B.
        • Slatopolsky E.
        • et al.
        Additive effects of weight-nearing exercise and estrogen on bone mineral density in older women.
        J Bone Miner Res. 1995; 10: 1303-1311
        • Kirchengast S.
        • Gruber D.
        • Sator M.
        • et al.
        Postmenopausal weight status, body composition and body fat distribution in relation to parameters of menstrual and reproductive history.
        Maturitas. 1999; 33: 117-126
        • Maghraoui A.E.
        • Guerboub A.A.
        • Mounach A.
        • et al.
        Body mass index and gynecological factors as determinants of bone mass in healthy Moroccan women.
        Maturitas. 2007; 56: 375-382
        • Cherdshewasart W.
        Toxicity tests of a phytoestrogen-rich herb: Pueraria mirifica.
        J Sci Res Chula Univ. 2003; 28: 1-12
        • Li B.
        • Yu S.
        Effect of puerarin on the bone metabolism in vitro.
        Bejing Da Xue Xue Bao. 2003; 35: 74-77
        • Gao Y.H.
        • Yamaguchi M.
        Anabolic effect of daidzein on cortical bone in tissue culture: comparison with genistein effect.
        Mol Cell Biochem. 1999; 194: 93-97
        • Jia T.L.
        • Wang H.Z.
        • Xie L.P.
        • et al.
        Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production.
        Biochem Pharmacol. 2003; 65: 709-715
        • Kanno S.
        • Hirano S.
        • Kayama F.
        Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells.
        Toxicology. 2004; 196: 137-145